RESUMO
Background and Objectives: Parkinson's disease (PD) is a pathological state characterized by a combined set of abnormal movements including slow motion, resting tremors, profound stiffness of skeletal muscles, or obvious abnormalities in posture and gait, together with significant behavioral changes. Until now, no single therapeutic modality was able to provide a complete cure for PD. This work was a trial to assess the immunomodulatory effects of canagliflozin with or without levodopa/carbidopa on rotenone-induced parkinsonism in Balb/c mice. Materials and Methods: In a mouse model of PD, the effect of canagliflozin with or without levodopa/carbidopa was assessed at the behavioral, biochemical, and histopathological levels. Results: The combination of levodopa/carbidopa and canagliflozin significantly mitigated the changes induced by rotenone administration regarding the behavioral tests, striatal dopamine, antioxidant status, Nrf2 content, SIRT-1/PPAR-gamma axis, RAGE/HMGB1/NF-κB signaling, and mitochondrial dysfunction; abrogated the neuroinflammatory responses, and alleviated the histomorphologic changes induced by rotenone administration relative to the groups that received either levodopa/carbidopa or canagliflozin alone. Conclusions: Canagliflozin may represent a new adjuvant therapeutic agent that may add value to the combatting effects of levodopa/carbidopa against the pathological effects of PD.
Assuntos
Canagliflozina , Carbidopa , Modelos Animais de Doenças , Proteína HMGB1 , Levodopa , Camundongos Endogâmicos BALB C , NF-kappa B , PPAR gama , Rotenona , Transdução de Sinais , Sirtuína 1 , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Levodopa/efeitos adversos , Carbidopa/farmacologia , Carbidopa/uso terapêutico , Camundongos , Sirtuína 1/metabolismo , Sirtuína 1/análise , NF-kappa B/metabolismo , Proteína HMGB1/metabolismo , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , PPAR gama/metabolismo , Doença de Parkinson/tratamento farmacológico , Combinação de Medicamentos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismoRESUMO
BACKGROUND: Cardiovascular disorders are major complications of rheumatoid arthritis (RA). Hence, finding effective agents that can target RA progression and its cardiovascular consequences is demanding. The present work aimed to explore the potential of lisinopril, an angiotensin-converting enzyme inhibitor, to mitigate adjuvant's-induced arthritis with emphasis on the pro-inflammatory signals, articular degradation cues, and angiogenesis alongside JAK-2/STAT-3 and Nrf2/HO-1 pathways. METHODS: Lisinopril (10 mg/kg/day) was administered by oral gavage for 3 weeks and the target signals were examined by biochemical assays, ELISA, histopathology, immunoblotting, and immunohistochemistry. RESULTS: Lisinopril attenuated the progression of arthritis as proven by lowering paw edema, arthritic index, and gait scores alongside diminishing the immune-cell infiltration/aberrant histopathology in the dorsal pouch lining. These favorable actions were associated with curtailing the production of inflammatory cytokines (TNF-α, IL-6, IL-1ß, and IL-17) and the pro-inflammatory angiotensin II alongside upregulating the anti-inflammatory angiotensin-(1-7) in the hind paw of arthritic rats. At the molecular level, lisinopril inhibited the upstream JAK-2/STAT-3 pathway by downregulating the protein expression of p-JAK-2/total JAK-2 and p-STAT-3/total STAT-3 ratio and the nuclear levels of NF-κBp65. Meanwhile, lisinopril curbed the downstream cartilage degradation signals matrix metalloproteinases (MMP-3 and MMP-9) and the bone erosion cue RANKL. Equally important, the protein expression of the angiogenesis signal VEGF was downregulated in the hind paw/dorsal lining. With respect to oxidative stress, lisinopril suppressed the paw lipid peroxides and boosted GSH and Nrf-2/HO-1 pathway. CONCLUSION: Lisinopril attenuated adjuvant-induced arthritis via inhibition of inflammation, articular degradation cues, and angiogenesis.
Assuntos
Inibidores da Enzima Conversora de Angiotensina , Artrite Experimental , Artrite Reumatoide , Lisinopril , Angiotensina II/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Adjuvante de Freund , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Peróxidos Lipídicos , Lisinopril/metabolismo , Lisinopril/uso terapêutico , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Oxirredução , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Ulcerative Colitis is a universal autoimmune disease with high incidence rates worldwide. It is characterized by the existence of many other concurrent immune-associated ailments, including diabetes. The used strategies for the management of this highly costing and complicated disease face great challenges. Therefore, the urge for new medication with fewer side effects and high efficacy is growing. The peroxisome proliferator-activated receptor-gamma (PPARγ) and nuclear factor Kappa-B (NF-κB) can be considered as crucial targets for the treatment of ulcerative colitis. Several studies reported the antioxidants, anti-inflammatory, and antiapoptotic actions of gliclazide and evaluated its cardioprotective and renoprotective effects. However, its impact on ulcerative colitis has never been investigated. This study delineated the effect of gliclazide administration on ulcerative colitis induced by acetic acid in rats and the underlying molecular mechanisms. Gliclazide (10 mg/kg; p.o) prominently decreased colon tissue injury as assessed by the histopathological analysis as well as myeloperoxidase, and intercellular adhesion molecule-1 levels. Gliclazide significantly alleviated the proinflammatory mediator, IL-6, promoted the anti-inflammatory cytokine, IL-10 and, withheld oxidative stress in the injured colon tissues. The protective effect of gliclazide was mediated through the upregulation of PPARγ and downregulation of NF-κB expression. The diminution of ulcerative colitis was also accompanied by an inhibition of the elevated activity and expression of mitogen-activated protein kinases and caspase-3 as assessed by Western blot and immunohistochemistry, respectively. Our findings spotlight, for the first time, the potential of the antidiabetic agent, gliclazide, to attenuate the experimentally induced ulcerative colitis. Therefore, gliclazide might be a propitious agent for the management of ulcerative colitis in diabetic patients.
Assuntos
Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Gliclazida/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ácido Acético , Animais , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Colite Ulcerativa/patologia , Colo/patologia , Regulação para Baixo/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Masculino , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/efeitos dos fármacos , Peroxidase/biossíntese , Peroxidase/genética , Ratos , Ratos WistarRESUMO
Diabetic retinopathy (DR) is recognized as one of the leading causes of blindness worldwide. Searching and validation for a novel therapeutic strategy to prevent its progress are promising. This work aimed to assess the retinal protective effects of duloxetine (DLX) in Alloxan-induced diabetic mice model. Animals were equally and randomly divided to four groups (eight mice per group); group 1: is the control group, 2: diabetic group, 3&4: diabetic and after 9 weeks received DLX for 4 weeks (15â¯mg/kg and 30â¯mg/kg), respectively. Quantitative real-time PCR (qPCR) analysis revealed nerve growth factor (NGF), inducible nitric oxide synthase (iNOS) and transforming growth factor beta (TGF-ß) genes upregulation in the diabetic group compared to controls. Also, increased retinal malondialdehyde (MDA) and the decline of reduced glutathione (GSH) levels were observed. The morphometric analysis of diabetic retina revealed a significant reduction in total retinal thickness compared to control. Diabetic retinal immunostaining and Western blot analyses displayed glial fibrillary acidic protein (GFAP) and vascular endothelial cell growth factor (VEGF) proteins expression upregulation as well as glucose transporter-1 (GLUT-1) downregulation comparing to controls. However, DLX-treated groups showed downregulated NGF, iNOS, and TGF-ß that was more obviously seen in the DLX-30â¯mg/kg group than DLX-15â¯mg/kg group. Furthermore, these groups showed amelioration of the oxidative markers; MDA and GSH, retaining the total retinal thickness nearly to control, GFAP and VEGF downregulation, and GLUT-1 upregulation compared to diabetic group. Taken together, it could be summarized that duloxetine can attenuate DR via the anti-inflammatory and the anti-oxidative properties as well as modulating the angiogenic and the neurotrophic factors expressions. This could hopefully pave the road to be included in the novel list of the therapeutic regimen for DR after validation in the clinic.
Assuntos
Retinopatia Diabética/tratamento farmacológico , Cloridrato de Duloxetina/uso terapêutico , Proteína Glial Fibrilar Ácida/metabolismo , Fatores de Crescimento Neural/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Retina/metabolismo , Análise de Variância , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Regulação para Baixo , Masculino , CamundongosRESUMO
BACKGROUND/AIMS: Camel milk (CM) has shown beneficial anti-inflammatory actions in several experimental and clinical settings. So far, its effect on rheumatoid arthritis (RA) has not been previously explored. Thus, the current work aimed to evaluate the effects of CM in Adjuvant-induced arthritis and air pouch edema models in rats, which mimic human RA. METHODS: CM was administered at 10 ml/kg orally for 3 weeks starting on the day of Freund's adjuvant paw inoculation. The levels of TNF-α and IL-10 were measured by ELISA while the protein expression of NF-κBp65, COX-2 and iNOS was detected by immunohistochemistry. The expression of MAPK target proteins was assessed by Western blotting. RESULTS: CM attenuated paw edema, arthritic index and gait score along with dorsal pouch inflammatory cell migration. CM lowered the TNF-α and augmented the anti-inflammatory IL-10 levels in sera and exudates of arthritic rats. It also attenuated the expression of activated NF-κBp65, COX-2 and iNOS in the lining of the dorsal pouch. Notably, CM inhibited the MAPK pathway signal transduction via lowering the phosphorylation of p38 MAPK, ERK1/2 and JNK1/2 in rat hind paws. Additionally, CM administration lowered the lipid peroxide and nitric oxide levels and boosted glutathione and total anti-oxidant capacity in sera and exudates of animals. CONCLUSION: The observed CM downregulation of the arthritic process may support the interest of CM consumption as an adjunct approach for the management of RA.
Assuntos
Anti-Inflamatórios/imunologia , Artrite Reumatoide/terapia , Leite/imunologia , Proteínas Quinases Ativadas por Mitógeno/imunologia , Transdução de Sinais , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Experimental/terapia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Camelus/imunologia , Interleucina-10/análise , Interleucina-10/imunologia , Proteínas Quinases Ativadas por Mitógeno/análise , NF-kappa B/análise , NF-kappa B/imunologia , Óxido Nítrico Sintase Tipo II/análise , Óxido Nítrico Sintase Tipo II/imunologia , Ratos Wistar , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/imunologiaRESUMO
A new series of novel pyrrolizine derivatives has been synthesized and biologically evaluated as potential anticancer agents. The starting compounds, 6-amino-7-cyano-N-(3,5-disubstitutedphenyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamides 11a-b, were reacted with different acid chlorides, aldehydes and isocyanates to give the target compounds 12-14. Structural characterizations of the new compounds were performed using spectral and elemental analysis. All compounds were tested for their anticancer activity against human breast cancer and prostate cancer cell lines, MCF-7 and PC-3 respectively. With exception of compounds 11a and 13a, results revealed that all the tested compounds showed half maximal inhibitory concentration (IC50) values less than 40µM. Compound 12b and the three urea derivatives 14b-d showed the most potent anticancer activity with IC50 values less than 2.73µM. The anticancer activity of these compounds was mediated, at least in part, via the induction of apoptosis as indicated by its ability to activate caspase-3/7. In light of the high potency of our novel compounds in targeting both breast and prostate cancers, these compounds warrant continued preclinical development as potential anticancer agents.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Pirróis/química , Antineoplásicos/química , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Pirróis/síntese química , Pirróis/farmacologiaRESUMO
AIM: Energy-restriction mimetic agents (ERMAs) are small-molecule agents that target various aspects of energy metabolism, which has emerged as a promising approach in cancer therapy. In the current study, we tested the ability of OSU-CG5, a novel ERMA, to target human colorectal cancer (CRC) in vitro. METHODS: Two human CRC cell lines (HCT-116 and Caco-2) were tested. Cell viability was assessed using MTT assay. Caspase-3/7 activities were measured using Caspase-Glo 3/7 assay kit. Western blot analysis was used to measure the expression of relevant proteins in the cells. Glucose consumption of the cells was detected using glucose uptake cell-based assay kit. RESULTS: OSU-CG5 dose-dependently inhibited HCT-116 and Caco-2 cell proliferation with the IC50 values of 3.9 and 4.6 µmol/L, respectively, which were 20-25-fold lower than those of resveratrol, a reference ERMA. Both OSU-CG5 (5, 10, and 20 µmol/L) and resveratrol (50, 100, and 200 µmol/L) dose-dependently increased caspase-3/7 activity and PARP level in the cells. Furthermore, both OSU-CG5 and resveratrol induced dose-dependent energy restriction in the cells: they suppressed glucose uptake and Akt phosphorylation, decreased the levels of p-mTOR and p-p70S6K, increased the levels of ER stress response proteins GRP78 and GADD153, and increased the level of ß-TrCP, which led to the downregulation of cyclin D1 and Sp1. CONCLUSION: OSU-CG5 exhibits promising anti-cancer activity against human CRC cells in vitro, which was, at least in part, due to energy restriction and the consequent induction of ER stress and apoptosis.
Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Metabolismo Energético/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose/metabolismo , Células HCT116 , Humanos , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologiaRESUMO
Studies have identified Coenzyme Q10 (CoQ10) as a promising agent in improving idiopathic male infertility; however, its role in chemically or environmentally induced testicular dysfunction is not well-established. We investigated the potential of CoQ10 to attenuate methotrexate (MTX)-induced testicular damage and to identify molecular targets of CoQ10 effects. Wistar rats received a single intraperitoneal dose of 20 mg/kg MTX on the fifth day of the 10-day experimental protocol. 100 mg/kg CoQ10 was given orally daily for ten days, alone or combined with MTX. The testes of MTX-treated animals showed thickened tunica albuginea, distortion of seminiferous tubules with a marked reduction of germinal lining, a few primary spermatocytes with no spermatozoa, apoptotic cells, congested sub-capsular and interstitial blood vessels, and interstitial edema. Reduction of reproductive hormones and increased oxidative, inflammatory, and apoptotic biomarkers levels were also seen in the MTX-treated rats. CoQ10 + MTX-treated rats were protected against MTX-induced testicular histological changes and showed improvement in testosterone, luteinizing-, and follicle-stimulating hormone serum levels compared to the MTX group. The testes of the CoQ10 + MTX-treated rats showed reduced malondialdehyde, myloperoxidase, tumor necrosis factor -α, interleukin-6 and -1ß and Bax: Bcl2 ratio and enhanced glutathione, and catalase compared to MTX alone. CoQ10 enhanced MTX-induced downregulation of Nrf2 and PPAR-γ signaling and modulated its downstream targets, the inducible nitric oxide synthase, NF-κB, Bax, and Bcl2. In conclusion, CoQ10 targeted the Nrf2-PPAR-γ signaling loop and its downstream pathways, mitigating MTX-induced oxidative stress-related damages and alleviating the testicular dysfunction MTX caused. Our data suggest Nrf2-PPAR-γ signaling as a potential therapeutic target in testicular toxicity, where oxidative stress, inflammation, and apoptosis trigger damage.
Assuntos
Metotrexato , Doenças Testiculares , Ubiquinona/análogos & derivados , Humanos , Ratos , Masculino , Animais , Metotrexato/toxicidade , Ratos Wistar , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Doenças Testiculares/induzido quimicamente , Doenças Testiculares/tratamento farmacológico , Doenças Testiculares/prevenção & controle , Antioxidantes/farmacologiaRESUMO
Cyclophosphamide is an anti-neoplastic drug that has shown competence in the management of a broad range of malignant tumors. In addition, it represents a keystone agent for management of immunological conditions. Despite these unique properties, induction of lung toxicity may limit its clinical use. Omarigliptin is one of the dipeptidyl peptidase-4 inhibitors that has proven efficacy in management of diabetes mellitus. Rosinidin is an anthocyanidin flavonoid that exhibited promising results in management of diseases characterized by oxidative stress, inflammation, and apoptosis. The present work investigated the possible effects of omarigliptin with or without rosinidin on cyclophosphamide-induced lung toxicity with an exploration of the molecular mechanisms that contribute to these effects. In a rodent model of cyclophosphamide elicited lung toxicity, the potential efficacy of omarigliptin with or without rosinidin was investigated at both the biochemical and the histopathological levels. Both omarigliptin and rosinidin exhibited a synergistic ability to augment the tissue antioxidant defenses, mitigate the inflammatory pathways, restore glucagon-like peptide-1 levels, modulate high mobility group box 1 (HMGB1)/receptors of advanced glycation end products (RAGE)/nuclear factor kappa B (NF-κB) axis, downregulate the fibrogenic mediators, and create a balance between the pathways involved in apoptosis and the autophagy signals in the pulmonary tissues. In conclusion, omarigliptin/rosinidin combination may be introduced as a novel therapeutic modality that attenuates the different forms of lung toxicities induced by cyclophosphamide.
Assuntos
Ciclofosfamida , Peptídeo 1 Semelhante ao Glucagon , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Piranos , Transdução de Sinais , Animais , Ciclofosfamida/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Masculino , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Piranos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Antocianinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ratos Wistar , Pirimidinas/farmacologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Proteína Forkhead Box O1 , Compostos Heterocíclicos com 2 AnéisRESUMO
Distinct metabolic strategies used by cancer cells to gain growth advantages, such as shifting from oxidative phosphorylation to glycolysis, constitute a basis for their selective targeting as a novel approach for cancer therapy. Thiazolidinediones (TZDs) are ligands for the nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) and they are clinically used as oral hypoglycemic agents. Accumulating evidence suggests that the ability of TZDs to suppress cancer cell proliferation through the interplay between apoptosis and autophagy was, at least in part, mediated through PPARγ-independent mechanisms. This review highlights recent advances in the pharmacological exploitation of the PPARγ-independent anticancer effects of TZDs to develop novel agents targeting tumor metabolism, including glucose transporter inhibitors and adenosine monophosphate-activated protein kinase, which have translational potential as cancer therapeutic agents.
Assuntos
Antineoplásicos/farmacologia , Hipoglicemiantes/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tiazolidinedionas/farmacologia , Animais , Linhagem Celular Tumoral , Glicólise/efeitos dos fármacos , Humanos , Neoplasias/patologiaRESUMO
Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt-nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt-NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt-NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy.
Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metanol/análogos & derivados , NF-kappa B/antagonistas & inibidores , Proteína Oncogênica v-akt/antagonistas & inibidores , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Embrião de Galinha , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Metanol/farmacologia , NF-kappa B/fisiologia , Proteína Oncogênica v-akt/fisiologiaRESUMO
Idiopathic pulmonary fibrosis is a terminal lung ailment that shares several pathological and genetic mechanisms with severe COVID-19. Thymol (THY) is a dietary compound found in thyme species that showed therapeutic effects against various diseases. However, the effect of THY against bleomycin (BLM)-induced lung fibrosis was not previously investigated. The current study investigated the ability of THY to modulate oxidative stress, inflammation, miR-29a/TGF-ß expression, and PI3K/phospho-Akt signaling in lung fibrosis. Mice were divided into Normal, THY (100 mg/kg, p.o.), BLM (15 mg/kg, i.p.), BLM + THY (50 mg/kg, p.o.), and BLM + THY (100 mg/kg, p.o.) groups and treated for four weeks. The obtained results showed that BLM + THY (50 mg/kg) and BLM + THY (100 mg/kg) reduced fibrotic markers; α-SMA and fibronectin, inflammatory mediators; TNF-α, IL-1ß, IL-6, and NF-kB and oxidative stress biomarkers; MDA, GSH, and SOD, relative to BLM group. Lung histopathological examination by H&E and Masson's trichrome stains confirmed the obtained results. Remarkably, expression levels of TGF-ß, PI3K, and phospho-Akt were decreased while miR-29a expression was elevated. In conclusion, THY effectively prevented BLM-induced pulmonary fibrosis by exerting significant anti-oxidant and anti-inflammatory effects. Our novel findings that THY upregulated lung miR-29a expression while decreased TGF-ß and PI3K/Akt signaling are worthy of further investigation as a possible molecular mechanism for THY's anti-fibrotic actions.
Assuntos
COVID-19 , MicroRNAs , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Bleomicina/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Timol/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , COVID-19/patologia , Inflamação/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , Fibrose , MicroRNAs/metabolismoRESUMO
Secondary osteoporosis is commonly caused by long-term intake of glucocorticoids (GCs), such as dexamethasone (DEX). Diosmin, a natural substance with potent antioxidant and anti-inflammatory properties, is clinically used for treating some vascular disorders. The current work targeted exploring the protective properties of diosmin to counteract DEX-induced osteoporosis in vivo. Rats were administered DEX (7 mg/kg) once weekly for 5 weeks, and in the second week, vehicle or diosmin (50 or 100 mg/kg/day) for the next four weeks. Femur bone tissues were collected and processed for histological and biochemical examinations. The study findings showed that diosmin alleviated the histological bone impairments caused by DEX. In addition, diosmin upregulated the expression of Runt-related transcription factor 2 (Runx2) and phosphorylated protein kinase B (p-AKT) and the mRNA transcripts of Wingless (Wnt) and osteocalcin. Furthermore, diosmin counteracted the rise in the mRNA levels of receptor activator of nuclear factor-kB ligand (RANKL) and the reduction in osteoprotegerin (OPG), both were induced by DEX. Diosmin restored the oxidant/antioxidant equilibrium and exerted significant antiapoptotic activity. The aforementioned effects were more pronounced at the dose level of 100 mg/kg. Collectively, diosmin has proven to protect rats against DEX-induced osteoporosis by augmenting osteoblast and bone development while hindering osteoclast and bone resorption. Our findings could be used as a stand for recommending supplementation of diosmin for patients chronically using GCs.
Assuntos
Conservadores da Densidade Óssea , Diosmina , Osteoporose , Animais , Ratos , Antioxidantes/metabolismo , Conservadores da Densidade Óssea/farmacologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dexametasona/farmacologia , Diosmina/farmacologia , Diosmina/uso terapêutico , Glucocorticoides/toxicidade , Ligantes , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Estresse Oxidativo , Ligante RANK/metabolismo , RNA Mensageiro/metabolismoRESUMO
Edaravone (ED) is a neuroprotective drug with beneficial effects against several disorders due to its prominent antioxidant activity. However, its effect against methotrexate (MTX)-induced testicular damage was not previously investigated. Therefore, we aimed to investigate the ability of ED to prevent the oxidative stress, inflammation, and apoptosis induced by MTX on the rat testis and to examine whether ED administration modulated the Akt/p53 signaling and steroidogenesis process. Rats were allocated into; Normal, ED (20 mg/kg, PO, for 10 days), MTX (20 mg/kg, i.p., on the 5th day), and ED + MTX groups. The results showed that MTX group exhibited higher serum activities of ALT, AST, ALP, and LDH in addition to histopathological alterations in the rat testis, compared to normal group. Furthermore, MTX induced down-regulation of the steroidogenic genes; StAR, CYP11a1, and HSD17B3 and reduced FSH, LH, and testosterone levels. The MTX group also showed higher levels of MDA, NO, MPO, NF-kB, TNF-α, IL-6, IL-1ß, Bax, and caspase 3, as well as, lower levels of GSH, GPx, SOD, IL-10, Bcl2 compared to normal rats, p < 0.05. In addition, MTX treatment resulted in increased p53 expression and decreased p-Akt expression. Remarkably, ED administration significantly prevented all the biochemical, genetic, and histological damage induced by MTX. Hence, ED treatment protected the rat testis from apoptosis, oxidative stress, inflammation, and impaired steroidogenesis induced by MTX. This novel protective effect was mediated by decreasing p53 while increasing p-Akt protein expression.
Assuntos
Metotrexato , Doenças Testiculares , Masculino , Humanos , Ratos , Animais , Metotrexato/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Edaravone , Proteína Supressora de Tumor p53/metabolismo , Ratos Wistar , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Estresse OxidativoRESUMO
Lung carcinoma is one of the most prevalent and deadly neoplasia worldwide. Numerous synthetic medications have been used in the treatment of cancer. However, there are several drawbacks, such as side effects and inefficiency. The current study focused on the potential anti-cancer effectiveness of tangeretin, an antioxidant flavonoid, on lung cancer induced experimentally in BALB/c mice and explored the involvement of NF-κB/ICAM-1, JAK/STAT-3, and caspase-3 signaling in its anti-cancer effect. BALB/c mice were injected with urethane (1.5 mg/kg) twice; on the first day and on the 60th day of the experiment, then treated with 200 mg/kg tangeretin orally once daily for the last 4 weeks of the experiment. Compared with urethane group, tangeretin normalized oxidative stress markers; MDA, GSH, and SOD activity. Moreover, it had an anti-inflammatory effect by decreasing lung MPO activity, ICAM-1, IL-6, NF-ÒB, and TNF-α expressions. Interestingly, tangeretin decreased cancer metastasis by reducing p-JAK, JAK, p-STAT-3, and STAT-3 protein expression levels. Furthermore, it increased the apoptotic marker, caspase-3, indicating enhanced apoptosis of cancer cells. Finally, histopathology confirmed the anti-cancer effect of tangeretin. In conclusion, tangeretin could have a promising effect in counteracting lung cancer via modulation of NF-κB/ICAM-1, JAK/STAT-3, and caspase-3 signaling.
Assuntos
Neoplasias Pulmonares , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Caspase 3 , Uretana , Molécula 1 de Adesão Intercelular , Camundongos Endogâmicos BALB C , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , ApoptoseRESUMO
Background: Inflammation is a strong reaction of the non-specific natural immune system that helps to start protective responses against encroaching pathogens and develop typical immunity against intruding factors. However, prolonged inflammation may lead to chronic autoimmune diseases. For thousands of years, medicinal plants have served as an excellent source of treatment for chronic pathologies such as metabolic diseases. Purpose: The present study aims to evaluate the anti-inflammatory and anti-angiogenic potential of Moringa olifera Lam. extract (MO) and Moringa-loaded nanoclay films. Methods: The extract preparation was done through the maceration technique using absolute methanol (99.7%) and labelled as Mo. Me. Mo. Me-loaded nanoclay-based films were prepared by using pectin and sericin (Table 1). The in vitro studies characterized the film thickness, moisture, and phytochemical contents. The in vivo anti-inflammatory tests involved using a cotton pellet-induced granuloma model assay. In addition, the chick chorioallantoic membrane (CAM) assay was employed for angiogenesis activity. Results: The phytochemical analysis of the extract confirmed the presence of alkaloids, glycosides, flavonoids and phytosterol. This extract contained quercetin in a large quantity. Cotton-pellet induced granuloma model study revealed a comparable (p > 0.05) effect of a high dose of Mo. Me (500 mg/kg) as compared with standard drug. Noteworthy, data obtained through the RT-PCR technique manifested the dose-dependent anti-oedematous effect of Moringa olifera via downregulation of TNF-α and interleukin-1ß. The findings of the CAM assay exhibited a remarkable anti-angiogenic activity of Mo. Me loaded nanoclay films, showing diffused vasculature network in the macroscopic snapshot. Conclusion: Moringa olifera and its nanocomposite films have therapeutic potential against inflammation.
RESUMO
PURPOSE: The present study was carried out to evaluate anti-inflammatory and antiangiogenic attributes of simvastatin and its nanofilms containing silver nanoparticles. METHODS: Silver nanoparticles and simvastatin-loaded nanocomposite (SNSN) films were formulated by using polymeric solution (pectin + sericin) through casting solution method. Different in vitro and in vivo anti-inflammatory assays were performed. In addition, chick chorioallantoic membrane assay (CAM) was also employed for angiogenesis activity. RESULTS: FTIR spectra of the film depicted the presence of intact simvastatin. Differential scanning calorimetry exhibited no endothermic expression in F9 film thermogram. The simvastatin release from all films exhibited a burst effect. Cotton-pellet induced granuloma model study showed that high dose of simvastatin and indomethacin produced comparable (p < 0.05) anti-inflammatory effect. Noteworthy, RT-PCR showed dose-dependent, anti-oedematous effect of simvastatin through downregulation of serum TNF-α and interleukin-1ß levels. While results of CAM assay exhibited remarkable anti-angiogenic potential of SNSN films showing dissolved blood vessels network macroscopically. CONCLUSION: To reiterate, simvastatin and its SNSN films can add significant contribution to the field of biomedicines due to their promising anti-inflammatory and antiangiogenic properties, however, clinical studies are required to validate their commercial use.
Assuntos
Nanopartículas Metálicas , Sinvastatina , Anti-Inflamatórios/farmacologia , Interleucinas , Prata/farmacologia , Sinvastatina/farmacologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Galangin, a bioactive flavonoid with remarkable antioxidant and anti-apoptotic actions, has demonstrated promising amelioration of experimental hepatotoxicity, cardiomyopathy, and colitis. Yet, its impact on cadmium-induced renal injury has not been explored. Herein, we aimed at exploring the potential of galangin to attenuate cadmium-induced nephrotoxicity in rats, focusing on oxidative stress, apoptosis, and autophagy. METHODOLOGY: Cadmium chloride (5 mg/kg/day) and galangin (15 mg/kg/day) were received by oral gavage and the kidney tissues were inspected using ELISA, biochemical measurements, histology, and immunohistochemistry. KEY FINDINGS: Galangin attenuated cadmium-induced renal damage by diminishing the histopathological alterations alongside KIM-1, BUN, and creatinine. At the molecular level, galangin attenuated the oxidative insult by significantly lowering the lipid peroxides and NOX-1 and augmenting GSH and GPx antioxidants. It also activated the cytoprotective SIRT1/Nrf2/HO-1 pathway by significantly upregulating the protein expression of SIRT1, Nrf2, and HO-1. Consistently, galangin suppressed renal apoptotic cell death by significantly lowering the protein expression of Bax and cytochrome C and activity of caspase-3 alongside upregulating the protein expression of the anti-apoptotic Bcl-2. Additionally, galangin activated the impaired autophagy flux as seen by diminishing the accumulation of SQSTM1/p62 and increasing the protein expression of Beclin 1. Meanwhile, galangin stimulated the autophagy-linked AMPK/mTOR pathway by significantly increasing the p-AMPK/total AMPK and lowering p-mTOR/total mTOR ratios. CONCLUSION: Galangin mitigated cadmium-induced nephrotoxicity thanks to its promising antioxidant, anti-apoptotic, and pro-autophagic effects. In perspective, galangin stimulated the SIRT1/Nrf2/HO-1 and AMPK/mTOR pathways. Hence, it may act as a complementary tool for the management of cadmium-induced renal injury.
Assuntos
Flavonoides/farmacologia , Nefropatias/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilato Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia , Cádmio/efeitos adversos , Cádmio/farmacologia , Flavonoides/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
BACKGROUND: Pronounced anti-inflammatory and anti-apoptotic features have been characterized for the angiotensin receptor blocker irbesartan. Yet, its effect on ethanol-induced gastropathy has not been studied. The present work explored the potential modulation of inflammatory, apoptotic, and autophagic events by irbesartan for the attenuation of ethanol-evoked gastric mucosal injury. METHODOLOGY: Wistar rats were divided into control, control + irbesartan, ethanol, ethanol + irbesartan, and ethanol + omeprazole groups. Macroscopic examination, histopathology, immunohistochemistry, and biochemical assays were applied to examine the gastric tissues. KEY FINDINGS: Irbesartan administration (50 mg/kg; by gavage) in ethanol-evoked gastropathy improved the gastric pathological manifestations (area of gastric lesion and ulcer index scores), histopathological changes, and microscopic damage scores. These beneficial effects were interceded by suppression of the HMGB1-associated inflammatory events and the linked downregulation of the nuclear NF-κBp65 protein expression. In the meantime, curtailing of the NLRP3 inflammasome by irbesartan was observed with consequent decline of the pro-inflammatory cytokine IL-1ß. In tandem, upregulation of the antioxidant Nrf2 and the cytoprotective PPAR-γ were seen. Together, suppression of the pro-inflammatory cues and pro-oxidant signals attenuated the pro-apoptotic events as evidenced by Bcl-2 upregulation, Bax downregulation, and caspase 3 dampened activity. Regarding gastric autophagy signals, irbesartan diminished SQSTM-1/p62 accumulation and upregulated Beclin 1. This was associated with gastric AMPK/mTOR pathway activation evidenced by increased AMPK (Ser487) phosphorylation and lowered mTOR (Ser2448) phosphorylation. CONCLUSION: Suppression of the inflammatory and apoptotic signals and upregulation of the pro-autophagy events may advocate the promising gastroprotective actions of irbesartan against ethanol-induced gastric injury.
Assuntos
Proteína HMGB1 , Úlcera Gástrica , Proteínas Quinases Ativadas por AMP/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose , Autofagia , Proteína Beclina-1/metabolismo , Caspase 3/metabolismo , Citocinas/metabolismo , Etanol/efeitos adversos , Mucosa Gástrica/metabolismo , Proteína HMGB1/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Irbesartana/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Omeprazol/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Úlcera Gástrica/induzido quimicamente , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
BACKGROUND: Troxerutin, a bioflavonoid with marked immune-modulatory and antioxidant features, has been proven to ameliorate experimental cardiotoxicity, hepatotoxicity, and neurodegeneration. However, its impact on methotrexate (MTX)-induced nephrotoxicity has not been investigated. In the current work, we aimed to investigate the potential of troxerutin to combat MTX-triggered renal injury, exploring immune cell infiltration, inflammation, autophagy, and apoptosis, with emphasis on the HMGB1/RAGE/NF-κB, AMPK/mTOR, and Nrf2/HO-1 pathways. METHODOLOGY: Troxerutin (150 mg/kg/day) was administered by oral gavage and the renal tissues were examined with the aid of biochemical assays, ELISA, histology, and immunohistochemistry. KEY FINDINGS: Troxerutin mitigated MTX-induced renal dysfunction by significantly lowering creatinine, BUN, and KIM-1 alongside immune-cell infiltration and histopathologic aberrations. These favorable effects were mediated by inhibition of HMGB1/RAGE/NF-κB cascade via downregulating the protein expression of HMGB1, RAGE, and nuclear NF-κBp65 alongside its downstream signals, including COX-2 and TNF-α. Moreover, troxerutin activated the autophagy flux as evidenced by upregulating renal Beclin 1, lowering p62 SQSTM1 accumulation, and activation of AMPK/mTOR pathway, seen by increasing p-AMPK/total AMPK and lowering p-mTOR/total mTOR signals. In tandem, troxerutin combated renal apoptotic changes as proven with lowering caspase-3 activity, Bax expression, and Bax/Bcl-2 ratio and upregulating the proliferation signal PCNA. Additionally, the oxidative insult was attenuated by troxerutin, as evidenced by lowering NOX-1 and lipid peroxides, replenishing GSH, GPx, and SOD antioxidants, and activating Nrf2/HO-1 pathway. CONCLUSION: Troxerutin attenuated MTX-triggered renal injury via inhibition of inflammation and apoptosis alongside activation of autophagy. Thus, it may serve as an adjunct modality for the management of MTX-linked nephrotoxicity.