Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FEBS Lett ; 341(2-3): 146-51, 1994 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-7907991

RESUMO

The heat-shock 60 proteins (Hsp60) constitute a subset of molecular chaperones essential for the survival of the cell, present in eubacteria as well as in eukaryotic organelles. Here, we have employed these highly conserved proteins for the inferences of the origins of the organelles. Hsp60s present in mitochondria from different eukaryotic lineages formed a clade, which showed the closest relationship to that of the Ehrlichia/Rickettsia cluster among the alpha-Proteobacteria. This, in addition to phenotypic characteristics, suggests that these obligate intracellular parasites and the lineage that generated the mitochondrion shared last common ancestry. In turn, Hsp60s present in chloroplasts from plants and a red alga, respectively, clustered specifically with those of the cyanobacteria, suggesting that all plastids derive exclusively from this eubacterial lineage.


Assuntos
Evolução Biológica , Organelas/fisiologia , Proteínas/fisiologia , Animais , Bactérias , Chaperonina 60 , Chaperoninas , Proteínas de Choque Térmico/fisiologia , Humanos , Organelas/classificação , Plastídeos
2.
Eur J Biochem ; 267(20): 6239-48, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11012678

RESUMO

We have analyzed the interaction of DnaK and plant Hsp70 proteins with the wild-type ferredoxin-NADP+ reductase precursor (preFNR) and mutants containing amino-acid replacements in the targeting sequence. Using an algorithm already developed [Rüdiger, S., Germeroth, L., Schneider-Mergener, J. & Bukau, B. (1997) EMBO J. 16, 1501-1507] we observed that 75% of the 727 plastid precursor proteins analyzed contained at least one site with high likelihood of DnaK binding in their transit peptides. Statistical analysis showed a decrease of DnaK binding site frequency within the first 15 amino-acid residues of the transit peptides. Using fusion proteins we detected the interaction of DnaK with the transit peptide of the folded preFNR but not with the mature region of the protein. Discharge of DnaK from the presequence was favored by addition of MgATP. When a putative DnaK binding site was artificially added at the N-terminus of the mature protein, we observed formation of complexes with bacterial and plant Hsp70 molecular chaperones. Reducing the likelihood of DnaK binding by directed mutagenesis of the presequence increased the release of bound DnaK. The Hsp70 proteins from plastids and plant cell cytosol also interacted with the preFNR transit peptide. Overall results are discussed in the context of the proposed models to explain the organelle protein import.


Assuntos
Cloroplastos/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Proteínas de Escherichia coli , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Calorimetria , Variação Genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plastídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinâmica
3.
FASEB J ; 11(2): 133-40, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9039955

RESUMO

Ferredoxin-NADP+ (oxido)reductase (EC 1.18.1.2, FNR) is an FAD-containing enzyme that catalyzes the reversible electron transfer between NADP(H) and electron carrier proteins such as ferredoxin and flavodoxin. Isoforms of this flavoprotein are present in chloroplasts, mitochondria, and bacteria in which they participate in a wide variety of redox metabolic pathways. Although ferredoxin-NADP+ reductases have been thoroughly investigated and their properties reviewed on several occasions, considerable advances in the understanding of these flavoenzymes have occurred in the last few years, including the characterization of cDNA and genomic clones encoding FNR proteins from plants, algae, vertebrates, and bacteria, determination of the atomic structure of a plant FNR at high resolution, and the expression of functional reductases in microorganisms like Escherichia coli and Saccharomyces cerevisiae. The aim of this article is to summarize information gained through these recent developments, including the phylogenetic relationships among ferredoxin reductases and the key structural features of the plant FNR family. Other aspects such as the catalytic mechanism of FNR and the molecular events underlying biogenesis, intracellular sorting, folding, and holoenzyme assembly of this important flavoenzyme are also discussed in some detail. Ferredoxin-NADP+ reductases display several outstanding properties that make them excellent model proteins to address broad biological questions.


Assuntos
Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/fisiologia , Plantas/enzimologia , Bactérias/enzimologia , Relação Estrutura-Atividade
4.
Int J Syst Bacteriol ; 44(3): 527-33, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7520741

RESUMO

The essential GroEL proteins represent a subset of molecular chaperones ubiquitously distributed among species of the eubacterial lineage, as well as in eukaryote organelles. We employed these highly conserved proteins to infer eubacterial phylogenies. GroEL from the species analyzed clustered in distinct groups in evolutionary trees drawn by either the distance or the parsimony method, which were in general agreement with those found by 16S rRNA comparisons (i.e., proteobacteria, chlamydiae, bacteroids, spirochetes, firmicutes [gram-positive bacteria], and cyanobacteria-chloroplasts). Moreover, the analysis indicated specific relationships between some of the aforementioned groups which appeared not to be clearly defined or controversial in rRNA-based phylogenetic studies. For instance, a monophyletic origin for the low-G+C and high-G+C subgroups among the firmicutes, as well as their specific relationship to the cyanobacteria-chloroplasts, was inferred. The general observations suggest that GroEL proteins provide valuable evolutionary tools for defining evolutionary relationships among the eubacterial lineage of life.


Assuntos
Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Evolução Biológica , Proteínas de Choque Térmico/genética , Bactérias/química , Composição de Bases , Chaperonina 60 , Chlamydia/classificação , Chlamydia/genética , Cianobactérias/classificação , Cianobactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Helicobacter pylori/classificação , Helicobacter pylori/genética , Filogenia , Porphyromonas gingivalis/classificação , Porphyromonas gingivalis/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Spirochaetales/classificação , Spirochaetales/genética
5.
Eur J Biochem ; 225(2): 677-85, 1994 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-7957183

RESUMO

The flavoprotein ferredoxin-NADP+ reductase catalyzes the final step of the photosynthetic electron transport i.e., the reduction of NADP+ by ferredoxin. Expression and secretion of this enzyme was examined in Saccharomyces cerevisiae using a cDNA cloned from a pea library [Newman, B. J. & Gray, J. C. (1988) Plant Mol. Biol. 10, 511-520]. Two pea library cDNA sequences were employed, one corresponding to the mature enzyme and the other containing, in addition, the sequence of the transit peptide that directs ferredoxin-NADP+ reductase to the chloroplast. These sequences were introduced into a yeast shuttle vector in frame with the mating factor alpha 1 secretion-signal coding region under the control of its natural mating factor alpha 1 promoter. Saccharomyces cerevisiae cells transformed with the recombinant plasmids were able to synthesize and secrete fully active pea ferredoxin-NADP+ reductase. In both cases, a 35-kDa polypeptide was the major product. N-terminal sequencing of the secreted proteins indicates processing at position -1 with respect to the N-terminus of the pea mature enzyme. Yeast cells transformed with plasmid encoding the ferredoxin-NADP+ reductase precursor secrete four-times more ferredoxin-NADP+ reductase to the medium than cells transformed with the plasmid encoding the mature form of the enzyme. Ferredoxin-NADP+ reductases purified from culture medium showed structural and enzymatic properties that were identical, within the experimental error, to those of native plant ferredoxin-NADP+ reductase. The overall results indicate that pea ferredoxin-NADP+ reductase can be properly folded and its prosthetic group assembled in the yeast endoplasmic reticulum, and that its natural transit peptide favors its secretion.


Assuntos
Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Regulação Enzimológica da Expressão Gênica , Plantas/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Eletroforese em Gel de Poliacrilamida , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Ferredoxina-NADP Redutase/biossíntese , Ferredoxina-NADP Redutase/química , Dados de Sequência Molecular , Peso Molecular , Plasmídeos , Dobramento de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 276(48): 44419-26, 2001 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-11577105

RESUMO

In ferredoxin-NADP(+) reductase (FNR), FAD is bound outside of an anti-parallel beta-barrel with the isoalloxazine lying in a two-tyrosine pocket. To elucidate the function of the flavin si-face tyrosine (Tyr-89 in pea FNR) on the enzyme structure and catalysis, we performed ab initio molecular orbital calculations and site-directed mutagenesis. Our results indicate that the position of Tyr-89 in pea FNR is mainly governed by the energetic minimum of the pairwise interaction between the phenol ring and the flavin. Moreover, most of FNR-like proteins displayed geometries for the si-face tyrosine phenol and the flavin, which correspond to the more negative free energy theoretical value. FNR mutants were obtained replacing Tyr-89 by Phe, Trp, Ser, or Gly. Structural and functional features of purified FNR mutants indicate that aromaticity on residue 89 is essential for FAD binding and proper folding of the protein. Moreover, hydrogen bonding through the Tyr-89 hydroxyl group may be responsible of the correct positioning of FAD and the substrate NADP(+)


Assuntos
Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Pisum sativum/enzimologia , Tirosina/química , Tirosina/metabolismo , Animais , Sítios de Ligação , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , NADP/química , Oxigênio/metabolismo , Fenol/química , Ligação Proteica , Estrutura Secundária de Proteína , Espectrofotometria , Especificidade por Substrato , Termodinâmica , Fatores de Tempo
7.
J Biol Chem ; 275(14): 10472-6, 2000 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-10744737

RESUMO

Chloroplast ferredoxin-NADP(+) reductase has a 32,000-fold preference for NADPH over NADH, consistent with its main physiological role of NADP(+) photoreduction for de novo carbohydrate biosynthesis. Although it is distant from the 2'-phosphoryl group of NADP(+), replacement of the C-terminal tyrosine (Tyr(308) in the pea enzyme) by Trp, Phe, Gly, and Ser produced enzyme forms in which the preference for NADPH over NADH was decreased about 2-, 10-, 300-, and 400-fold, respectively. Remarkably, in the case of the Y308S mutant, the k(cat) value for the NADH-dependent activity approached that of the NADPH-dependent activity of the wild-type enzyme. Furthermore, difference spectra of the NAD(+) complexes revealed that the nicotinamide ring of NAD(+) binds at nearly full occupancy in the active site of both the Y308G and Y308S mutants. These results correlate well with the k(cat) values obtained with these mutants in the NADH-ferricyanide reaction. The data presented support the hypothesis that specific recognition of the 2'-phosphate group of NADP(H) is required but not sufficient to ensure a high degree of discrimination against NAD(H) in ferredoxin-NADP(+) reductase. Thus, the C-terminal tyrosine enhances the specificity of the reductase for NADP(H) by destabilizing the interaction of a moiety common to both coenzymes, i.e. the nicotinamide.


Assuntos
Cloroplastos/enzimologia , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , NADP/metabolismo , Niacinamida , Pisum sativum/enzimologia , Tirosina , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NAD/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
Eur J Biochem ; 251(3): 724-8, 1998 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9490045

RESUMO

The DnaK system is required for the productive folding of pea chloroplast ferredoxin-NADP+ reductase (FNR) expressed in Escherichia coli. The formation of a mature active enzyme was severely impaired in E. coli dnaK, dnaJ or grpE mutants expressing either the cytosolic precursor of the reductase (preFNR) or the mature apoenzyme, and these forms aggregated extensively in these cells. Coexpression of dnaK from a multicopy plasmid in the dnaK-null mutants restored preFNR processing and folding of FNR, rendering a mature-sized active enzyme. Overexpression of GroESL chaperonins failed to prevent preFNR aggregation, but it restored productive folding of FNR in dnaK-null mutants expressing the mature enzyme. Expression of preFNR in OmpT-protease-deficient E. coli cells resulted in the accumulation of the unprocessed precursor in the soluble fraction of the cells. The interaction of this soluble preFNR, but not the mature reductase, with DnaK and GroEL was evidenced by immunoprecipitation studies. We conclude that, in addition to the GroE chaperonins [Carrillo, N., Ceccarelli, E. A., Krapp, A. R., Boggio, S., Ferreyra, R. G. & Viale, A. M. (1992) J. Biol. Chem. 267, 15537-15541], the DnaK chaperone system plays a crucial role in the folding pathway of FNR.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli , Escherichia coli/fisiologia , Ferredoxina-NADP Redutase/biossíntese , Ferredoxina-NADP Redutase/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Óperon , Pisum sativum/enzimologia , Dobramento de Proteína , Alelos , Proteínas de Bactérias/genética , Sítios de Ligação , Chaperoninas , Cloroplastos/enzimologia , Clonagem Molecular , Escherichia coli/genética , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
9.
Nat Struct Biol ; 6(9): 847-53, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10467097

RESUMO

The flavoenzyme ferredoxin-NADP+ reductase (FNR) catalyzes the production of NADPH during photosynthesis. Whereas the structures of FNRs from spinach leaf and a cyanobacterium as well as many of their homologs have been solved, none of these studies has yielded a productive geometry of the flavin-nicotinamide interaction. Here, we show that this failure occurs because nicotinamide binding to wild type FNR involves the energetically unfavorable displacement of the C-terminal Tyr side chain. We used mutants of this residue (Tyr 308) of pea FNR to obtain the structures of productive NADP+ and NADPH complexes. These structures reveal a unique NADP+ binding mode in which the nicotinamide ring is not parallel to the flavin isoalloxazine ring, but lies against it at an angle of approximately 30 degrees, with the C4 atom 3 A from the flavin N5 atom.


Assuntos
Cristalografia por Raios X , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , NADP/metabolismo , Pisum sativum/enzimologia , Engenharia de Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Cristalização , Ferredoxina-NADP Redutase/genética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , NADP/química , Ligação Proteica , Conformação Proteica , Análise Espectral , Termodinâmica , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA