Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Juntendo Iji Zasshi ; 69(1): 42-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38854847

RESUMO

Objectives: The role of autophagy in pancreatic ß cells has been reported, but the relationship between autophagy and insulin metabolism is complex and is not fully understood yet. Design: We here analyze the relationship between autophagy and insulin metabolism from a morphological aspect. Methods: We observe the morphological changes of ß cell-specific Atg7-deficient mice and Atg5-deficient MIN6 cells with electron microscopy. Results: We find that Atg7-deficient ß cells exhibit a marked expansion of the endoplasmic reticulum (ER). We also find that the inhibitory state of insulin secretion causes morphological changes in the Golgi, including ministacking and swelling. The same morphological alterations are observed when insulin secretion is suppressed in Atg5-deficient MIN6 cells. Conclusions: The defect of autophagy induces ER expansion, and inhibition of insulin secretion induces Golgi swelling, probably via ER stress and Golgi stress, respectively.

2.
Cells ; 12(24)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132137

RESUMO

Autophagy is a cellular mechanism that utilizes lysosomes to degrade its own components and is performed using Atg5 and other molecules originating from the endoplasmic reticulum membrane. On the other hand, we identified an alternative type of autophagy, namely, Golgi membrane-associated degradation (GOMED), which also utilizes lysosomes to degrade its own components, but does not use Atg5 originating from the Golgi membranes. The GOMED pathway involves Ulk1, Wipi3, Rab9, and other molecules, and plays crucial roles in a wide range of biological phenomena, such as the regulation of insulin secretion and neuronal maintenance. We here describe the overview of GOMED, methods to detect autophagy and GOMED, and to distinguish GOMED from autophagy.


Assuntos
Autofagia , Complexo de Golgi , Complexo de Golgi/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Retículo Endoplasmático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA