Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; : e202400443, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958991

RESUMO

The combination of metal-based homogeneous and heterogeneous catalysts in the same reaction media is a powerful, yet relatively unexplored approach in organic chemistry. This strategy can address important limitations associated with purely homogeneous or heterogeneous catalysis such as the incompatibility of different catalytic species in solution, or the limited tunability of solid catalysts, respectively. Moreover, the facile reusability of the solid catalyst, contributes to increase the overall sustainability of the process. As a result, this semi-heterogeneous multi-catalytic approach has unlocked significant advances in organic chemistry, improving existing reactions and even enabling the discovery of novel transformations, exemplified by the formal alkane metathesis. This concept article aims to showcase the benefits of this strategy through exploration of diverse relevant examples from the literature, hoping to spur research on new metal-based homogeneous-heterogeneous catalyst combinations that will result in reactivity challenging to achieve by conventional homogeneous or heterogeneous catalysis alone.

2.
J Org Chem ; 83(21): 13381-13394, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30351936

RESUMO

The photolysis at 254 nm of lithium iodide and olefins 1 carrying an electron-withdrawing Z-substituent in CO2-saturated (1 bar) anhydrous acetonitrile at room temperature produces the atom efficient and transition metal-free photoiodocarboxylation of the C═C double bond. The reaction proceeds well for terminal olefins 1 to form the new C-I and C-C σ-bonds at the α and ß-positions of the Z-substituent, respectively, and is strongly inhibited by polar protic solvents or additives. The experimental results suggest that the reaction channels through the radical anion [CO2•-] in acetonitrile, yet involves different intermediates in aqueous medium. The stabilizing ion-quadrupole and electron donor-acceptor interactions of CO2 with the iodide anion play a crucial role in the reaction course as they allow CO2 to penetrate the solvation shell of the anion in acetonitrile, but not in water. The reaction paths and the reactive intermediates involved under different conditions are discussed.

3.
ChemSusChem ; 17(13): e202400331, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38695852

RESUMO

An efficient heterogeneous catalytic system for the oxidative aminocarbonylation of alkynes and amines in the presence of CO/O2 to afford substituted propiolamides has been developed. The active nanocatalyst, [Pd/Mg3Al-LDH]-300(D), is composed by Pd nanoaggregates (2-3 nm average particle size) stabilized over a partially dehydrated [Mg3Al-LDH] matrix. The methodology has resulted widely applicable, being the first catalytic system, either homogeneous or heterogeneous, able to activate not only aliphatic amines but also poorly-nucleophilic aromatic amines. In fact, >60 substituted propiolamides have been synthesized in good to excellent isolated yields through this methodology, being 27 novel compounds. An important characterization effort (XRD, 27Al MAS NMR, TGA, TPD-CO2, BET area, XPS, HAADF-HRSTEM and HRTEM) and optimization of the synthesis conditions of the optimal catalyst has been performed. This study, together with a series of kinetic and mechanistic essays, indicates that the optimal catalyst is composed by Pd(0) species stabilized in a partially dehydrated/dehydroxylated LDH material with a Mg/Al molar ratio of 3 and a small crystallite size. All the experimental data indicates that the in situ formation of [PdI2] active species in the material surface together with the presence of a matrix with the optimal acid/base properties are key aspects of this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA