Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630276

RESUMO

Glioblastoma, the most dangerous and aggressive type of CNS tumor, appears resistant to many chemotherapy drugs. In the patient-derived glioma cell lines NULU and ZAR, which exhibit drug-resistant phenotypes, we investigated the effect of combined AE (Aloe-emodin) and TMZ (temozolomide) and found a significant additive inhibitory effect on cell growth and a promising cytotoxic effect on both cell lines compared to treatment with single agents. We also examined the effect of combined AE and TMZ treatment on the drug-resistance protein MGMT. The results suggest that using AE combined with traditional drugs restores drug resistance in both primary resistant cell lines (NULU and ZAR). Furthermore, migration assays and scratch tests showed that the combined use of AE and TMZ can slow down the colony formation and migration of glioblastoma cells. These convincing results suggest that AE could be a natural adjuvant agent to potentiate the effects of traditional drugs (TMZ) and overcome drug resistance in glioblastoma cells.


Assuntos
Aloe , Emodina , Glioblastoma , Humanos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Linhagem Celular
2.
J Neurooncol ; 157(1): 1-14, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35217948

RESUMO

INTRODUCTION: Atypical teratoid/rhabdoid tumor (AT/RT) is a highly aggressive embryonal CNS neoplasm, characterized by inactivation of SMARCB1 (INI1) or rarely of SMARCA4 (BRG1). While it is predominantly a childhood tumor, AT/RT is rare in adults. METHODS: We provide a comprehensive systematic review of literature with meta-analysis; 92 adult cases were found from 74 articles. We additionally present 4 cases of adult AT/RTs (age ranging from 19 to 29 years), located to cerebellum in 2 cases, to ponto-cerebellar angle in 1 case and to spinal cord in the remaining case. RESULTS: Microscopic features of our 4 cases showed a highly cellular tumor with rhabdoid morphology and high mitotic activity. All tumor cells lacked nuclear SMARCB1/INI1 protein expression. In case no. 3 we also performed methylation profiling which clustered the tumor with pediatric AT/RT-MYC subgroup. Prognosis remains poor in both pediatric and adult population with a median overall survival of 11 months. Our review demonstrated median overall survival of 15 months among the adult populations. However, consistent with a recent review, adult AT/RT seems to have highly variable prognosis and some patients reach long term survival with 22.9% of 5-year survival without evidence of disease and mean follow up time of 35.9 months (SD = 36.5). 27.1% of dissemination was also reported among the adult population. CONCLUSIONS: Adult AT/RTs predominantly arise in female patients and in supratentorial location. Midline structures, including the sellar region, are the most affected sites, especially among females aged > 40 years. Male gender is more prevalent between the age of 18 and 40 years and more frequently associated with non-midline tumors. Factors significantly associated with better prognosis are patient's age (< 40 years), combined radio-chemotherapy adjuvant approach and Ki-67 score < 40%.


Assuntos
Neoplasias do Sistema Nervoso Central , Tumor Rabdoide , Teratoma , Adolescente , Adulto , Neoplasias do Sistema Nervoso Central/patologia , Criança , DNA Helicases , Feminino , Humanos , Masculino , Proteínas Nucleares , Tumor Rabdoide/metabolismo , Proteína SMARCB1/genética , Teratoma/patologia , Fatores de Transcrição , Adulto Jovem
3.
Neuropathology ; 42(3): 169-180, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35042275

RESUMO

Cerebellar liponeurocytoma (CL) is an unusual tumor, histologically composed of a mixture of small to medium-sized, rounded neurocytic cells and a variable lipomatous component. Although CL was originally considered as a subtype of medulloblastoma, subsequent molecular studies demonstrated that this tumor was a distinct entity, exhibiting the tumor protein p53 gene (TP53) missense mutations in 20% of cases, chromosome 17 deletion, and the absence of mutations in the adenomatous polyposis coli gene (APC), the protein patched homolog gene (PTCH), the kinase insert domain receptor gene (KDR), and the ß-catenin gene (CTNNB). Apart from these molecular features, little is known about the pathogenesis and the genetic landscape of CL to date. In order to characterize the mutational landscape of CL and identify alterations that are driving tumorigenesis, we report a series of three cases, including one recurrent tumor, analysed by next-generation sequencing (NGS), which identified a total of 22 variants, of which four were missense mutations, nine were synonymous variants, and nine were located on intronic regions. In particular, DNA sequencing identified missense mutations in APC, KDR, and TP53 that could be implicated in promoting tumor progression and angiogenesis of CL. Furthermore, the NGS analysis revealed that recurrent CL did not have additional genetic changes compared with the primary tumor. Moreover, the high frequencies of detected mutations suggested that the identified alterations are germline variants. Indeed, an additional NGS on the genomic DNA obtained from one of the three patients confirmed the presence of the variants in the germline DNA. In conclusion, the obtained data support the hypothesis that CL is a distinct pathological entity that does not show specific somatic alterations driving tumorigenesis.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Cerebelares , Meduloblastoma , Polipose Adenomatosa do Colo/genética , Carcinogênese , Neoplasias Cerebelares/genética , Humanos , Meduloblastoma/patologia , Mutação
4.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054871

RESUMO

Glioblastoma (GBM) is the most malignant glioma with an extremely poor prognosis. It is characterized by high vascularization and its growth depends on the formation of new blood vessels. We have previously demonstrated that TRPML2 mucolipin channel expression increases with the glioma pathological grade. Herein by ddPCR and Western blot we found that the silencing of TRPML2 inhibits expression of the VEGFA/Notch2 angiogenic pathway. Moreover, the VEGFA/Notch2 expression increased in T98 and U251 cells stimulated with the TRPML2 agonist, ML2-SA1, or by enforced-TRPML2 levels. In addition, changes in TRPML2 expression or ML2-SA1-induced stimulation, affected Notch2 activation and VEGFA release. An increased invasion capability, associated with a reduced VEGF/VEGFR2 expression and increased vimentin and CD44 epithelial-mesenchymal transition markers in siTRPML2, but not in enforced-TRPML2 or ML2-SA1-stimulated glioma cells, was demonstrated. Furthermore, an increased sensitivity to Doxorubicin cytotoxicity was demonstrated in siTRPML2, whereas ML2-SA1-treated GBM cells were more resistant. The role of proteasome in Cathepsin B-dependent and -independent pRB degradation in siTRPML2 compared with siGLO cells was studied. Finally, through Kaplan-Meier analysis, we found that high TRPML2 mRNA expression strongly correlates with short survival in GBM patients, supporting TRPML2 as a negative prognostic factor in GBM patients.


Assuntos
Glioblastoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Receptor Notch2/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Canais de Potencial de Receptor Transitório/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Catepsina B/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Prognóstico , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887088

RESUMO

Among brain cancers, glioblastoma (GBM) is the most malignant glioma with an extremely poor prognosis. It is characterized by high cell heterogeneity, which can be linked to its high malignancy. We have previously demonstrated that TRPML1 channels affect the OS of GBM patients. Herein, by RT-PCR, FACS and Western blot, we demonstrated that TRPML1 and TRPML2 channels are differently expressed in GBM patients and cell lines. Moreover, these channels partially colocalized in ER and lysosomal compartments in GBM cell lines, as evaluated by confocal analysis. Interestingly, the silencing of TRPML1 or TRPML2 by RNA interference results in the decrease in the other receptor at protein level. Moreover, the double knockdown of TRPML1 and TRPML2 leads to increased GBM cell survival with respect to single-channel-silenced cells, and improves migration and invasion ability of U251 cells. Finally, the Kaplan-Meier survival analysis demonstrated that patients with high TRPML2 expression in absence of TRPML1 expression strongly correlates with short OS, whereas high TRPML1 associated with low TRPML2 mRNA expression correlates with longer OS in GBM patients. The worst OS in GBM patients is associated with the loss of both TRPML1 and TRPML2 channels.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Canais de Potencial de Receptor Transitório , Neoplasias Encefálicas/genética , Linhagem Celular , Glioblastoma/genética , Humanos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
6.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887364

RESUMO

Breakthrough cancer pain (BTcP) refers to a sudden and transient exacerbation of pain, which develops in patients treated with opioid analgesics. Fast-onset analgesia is required for the treatment of BTcP. Light-activated drugs offer a novel potential strategy for the rapid control of pain without the typical adverse effects of systemic analgesic drugs. mGlu5 metabotropic glutamate receptor antagonists display potent analgesic activity, and light-induced activation of one of these compounds (JF-NP-26) in the thalamus was found to induce analgesia in models of inflammatory and neuropathic pain. We used an established mouse model of BTcP based on the injection of cancer cells into the femur, followed, 16 days later, by systemic administration of morphine. BTcP was induced by injection of endothelin-1 (ET-1) into the tumor, 20 min after morphine administration. Mice were implanted with optic fibers delivering light in the visible spectrum (405 nm) in the thalamus or prelimbic cortex to locally activate systemically injected JF-NP-26. Light delivery in the thalamus caused rapid and substantial analgesia, and this effect was specific because light delivery in the prelimbic cortex did not relieve BTcP. This finding lays the groundwork for the use of optopharmacology in the treatment of BTcP.


Assuntos
Analgesia , Dor Irruptiva , Dor do Câncer , Neoplasias , Receptores de Glutamato Metabotrópico , Analgesia/efeitos adversos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/efeitos adversos , Animais , Dor Irruptiva/tratamento farmacológico , Dor Irruptiva/etiologia , Dor do Câncer/tratamento farmacológico , Dor do Câncer/etiologia , Modelos Animais de Doenças , Camundongos , Morfina/farmacologia , Morfina/uso terapêutico , Neoplasias/tratamento farmacológico , Medição da Dor , Tálamo
7.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500428

RESUMO

Isoginkgetin (Iso) is a natural bioflavonoid isolated from the leaves of Ginkgo biloba, this natural substance exhibits many healing properties, among which the antitumor effect stands out. Here we tested the effect of Iso on the growth of U87MG glioblastoma cells. Growth curves and MTT toxicity assays showed time and dose-dependent growth inhibition of U87MG after treatment with Iso (15/25 µM) for 1, 2, and 3 days. The cell growth block of U87MG was further investigated with the colony formation test, which showed that iso treatment for 24 h reduced colony formation. The present study also aimed to evaluate the effect of Iso on U87MG glioblastoma cell migration. The FACS analysis, on the other hand, showed that treatment with Iso 15 µM determines a blockage of the cell cycle in the S1 phase. Further investigation shows that Iso treatment of U87MG altered the protein pathways of homeostasis including autophagy and apoptosis. The present study demonstrated, for the first time, that Iso could represent an excellent adjuvant drug for the treatment of glioblastoma by simultaneously activating multiple mechanisms that control the growth and migration of neoplastic cells.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Proliferação de Células , Autofagia , Apoptose , Ciclo Celular , Neoplasias Encefálicas/tratamento farmacológico , Antineoplásicos Alquilantes/farmacologia
8.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458581

RESUMO

Here, we propose Ageritin, the prototype of the ribotoxin-like protein family, as an adjuvant treatment to control the growth of NULU and ZAR, two primary human glioblastoma cell lines, which exhibit a pharmacoresistance phenotype. Ageritin is able to inhibit NULU and ZAR growth with an IC50 of 0.53 ± 0.29 µM and 0.42 ± 0.49 µM, respectively. In this study, Ageritin treatment highlighted a macroscopic genotoxic response through the formation of micronuclei, which represents the morphological manifestation of genomic chaos induced by this toxin. DNA damage was not associated with either the deregulation of DNA repair enzymes (i.e., ATM and DNA-PK), as demonstrated by quantitative PCR, or reactive oxygen species. Indeed, the pretreatment of the most responsive cell line ZAR with the ROS scavenger N-acetylcysteine (NAC) did not follow the reverse cytotoxic effect of Ageritin, suggesting that this protein is not involved in cellular oxidative stress. Vice versa, Ageritin pretreatment strongly enhanced the sensitivity to temozolomide (TMZ) and inhibited MGMT protein expression, restoring the sensitivity to temozolomide. Overall, Ageritin could be considered as a possible innovative glioblastoma treatment, directly damaging DNA and downregulating the MGMT DNA repair protein. Finally, we verified the proteolysis susceptibility of Ageritin using an in vitro digestion system, and considered the future perspective use of this toxin as a bioconjugate in biomedicine.


Assuntos
Agaricales , Glioblastoma , Toxinas Biológicas , Antineoplásicos Alquilantes , Linhagem Celular Tumoral , Metilases de Modificação do DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Humanos , Ribonucleases , Temozolomida/farmacologia
9.
J Neurooncol ; 151(2): 123-133, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33398536

RESUMO

BACKGROUND: Gliomas represent about 80% of primary brain tumours and about 30% of malignant ones, which today don't have a resolution therapy because of their variability. A valid model for the study of new personalized therapies can be represented by primary cultures from patient's tumour biopsies. METHODS: In this study we consider 12 novel cell lines established from patients' gliomas and immunohistochemically and molecularly characterized according to the newly updated 2016 CNS Tumour WHO classification. RESULTS: Eight of these lines were glioblastoma cells, two grade III glioma cells (anaplastic astrocytoma and oligo astrocytoma) and two low grade glioma cells (grade II astrocytoma and oligodendroglioma). All cell lines were analysed by immunohistochemistry for specific glioma markers, respectively VIMENTIN, GFAP, IDH1R132, and ATRX. The methylation status of the MGMT gene promoter was also determined in all lines. The comparison of the immunohistochemical characteristics and of the MGMT methylation status of the lines with the tissues of origin shows that the cells in culture maintain the same characteristics. CONCLUSIONS: Human cancer cell lines represent a support in the knowledge of tumour biology and in drug discovery through its facile experimental manipulation. TRIAL REGISTRATION: NCT04180046.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/patologia , Metilação de DNA , Glioma/patologia , Mutação , Regiões Promotoras Genéticas , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/genética , Feminino , Glioma/classificação , Glioma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Células Tumorais Cultivadas , Organização Mundial da Saúde
10.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968687

RESUMO

Recently, several studies focused on the genetics of gliomas. This allowed identifying several germline loci that contribute to individual risk for tumor development, as well as various somatic mutations that are key for disease classification. Unfortunately, none of the germline loci clearly confers increased risk per se. Contrariwise, somatic mutations identified within the glioma tissue define tumor genotype, thus representing valid diagnostic and prognostic markers. Thus, genetic features can be used in glioma classification and guided therapy. Such copious genomic variabilities are screened routinely in glioma diagnosis. In detail, Sanger sequencing or pyrosequencing, fluorescence in-situ hybridization, and microsatellite analyses were added to immunohistochemistry as diagnostic markers. Recently, Next Generation Sequencing was set-up as an all-in-one diagnostic tool aimed at detecting both DNA copy number variations and mutations in gliomas. This approach is widely used also to detect circulating tumor DNA within cerebrospinal fluid from patients affected by primary brain tumors. Such an approach is providing an alternative cost-effective strategy to genotype all gliomas, which allows avoiding surgical tissue collection and repeated tumor biopsies. This review summarizes available molecular features that represent solid tools for the genetic diagnosis of gliomas at present or in the next future.


Assuntos
Biomarcadores Tumorais/genética , Loci Gênicos/genética , Glioma/genética , Neoplasias Encefálicas/patologia , DNA Tumoral Circulante/líquido cefalorraquidiano , Variações do Número de Cópias de DNA , Genômica , Glioma/diagnóstico , Glioma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Mutação , Patologia Molecular , Análise de Sequência de DNA
11.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33322048

RESUMO

In this study, we propose lactucopicrin (LCTP), a natural sesquiterpene lactone from Lactucavirosa, as a molecule able to control the growth of glioblastoma continuous cell line U87Mg. The IC50 of U87Mg against LCTP revealed a strong cytotoxic effect. Daily administration of LCTP showed a dose and time-dependent reduction of GBM cell growth and viability, also confirmed by inhibition of clonogenic potential and mobility of U87Mg cells. LCTP activated autophagy in U87Mg cells and decreased the phosphorylation of proliferative signals pAKT and pERK. LCTP also induced the cell cycle arrest in G2/M phase, confirmed by decrease of CDK2 protein and increase of p53 and p21. LCTP stimulated apoptosis as evidenced by reduction of procaspase 6 and the increase of the cleaved/full-length PARP ratio. The pre-treatment of U87Mg cells with ROS scavenger N-acetylcysteine (NAC), which reversed its cytotoxic effect, showed the involvement of LCTP in oxidative stress. Finally, LCTP strongly enhanced the sensitivity of U87Mg cells to canonical therapy Temozolomide (TMZ) and synergized with this drug. Altogether, the growth inhibition of U87Mg GBM cells induced by LCTP is the result of several synergic mechanisms, which makes LCTP a promising adjuvant therapy for this complex pathology.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Lactonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma , Humanos , Lactonas/química , Estrutura Molecular , Sesquiterpenos/química
12.
Epilepsia ; 59(2): 449-459, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29283181

RESUMO

OBJECTIVE: γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in adult central nervous system, and profound alterations of GABA receptor functions are linked to temporal lobe epilepsy (TLE). Here we describe the functional relationships between GABA receptors type B (GABAB R) and type A (GABAA R) in human temporal cortex and how TLE affects this aspect of GABAergic signaling. METHODS: Miniature inhibitory postsynaptic currents (mIPSCs) were recorded by patch-clamp techniques from human L5 pyramidal neurons in slices from temporal cortex tissue obtained from surgery. RESULTS: We describe a constitutive functional crosstalk between GABAB Rs and GABAA Rs in human temporal layer 5 pyramidal neurons, which is lost in epileptic tissues. The activation of GABAB Rs by baclofen, in addition to the expected reduction of mIPSC frequency, produced, in cortex of nonepileptic patients, the prolongation of mIPSC rise and decay times, thus increasing the inhibitory net charge associated with a single synaptic event. Block of K+ channels did not prevent the increase of decay time and charge. Protein kinase A (PKA) blocker KT5720 and pertussis toxin inhibited the action of baclofen, whereas 8Br-cAMP mimicked the GABAB R action. The same GABAB R-mediated modulation of GABAA Rs was observed in pyramidal neurons of rat temporal cortex, with both PKA and PKC involved in the process. In cortices from TLE patients and epileptic rats, baclofen lost its ability to modulate mIPSCs. SIGNIFICANCE: Our results highlight the association of TLE with functional changes of GABAergic signaling that may be related to seizure propagation, and suggest that the selective activation of a definite subset of nonpresynaptic GABAB Rs may be therapeutically useful in TLE.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Neocórtex/metabolismo , Células Piramidais/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Lobo Temporal/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Adolescente , Adulto , Animais , Baclofeno/farmacologia , Carbazóis/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Inibidores Enzimáticos/farmacologia , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/cirurgia , Feminino , Agonistas dos Receptores de GABA-B/farmacologia , Humanos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Pessoa de Meia-Idade , Agonistas Muscarínicos/toxicidade , Neocórtex/efeitos dos fármacos , Neocórtex/fisiopatologia , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Pilocarpina/toxicidade , Proteína Quinase C/metabolismo , Células Piramidais/efeitos dos fármacos , Pirróis/farmacologia , Ratos , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/fisiopatologia
13.
Horm Metab Res ; 50(8): 640-647, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30021235

RESUMO

Peroxisome proliferator-activated receptor alpha (PPARα) has been involved in the regulation of somatotroph tumour cells and may be targeted by different drugs, some of them are in current clinical use. The aim of this study was to investigate the expression of PPARα in additional phenotypes of pituitary adenomas (PA), the relationship between PPARα and its potential molecular partner aryl hydrocarbon receptor interacting protein (AIP) in these tumours, and the effects of PPARα agonists on lactotroph cells. Seventy-five human PA - 57 non-functioning (NFPA) and 18 prolactinomas (PRL-PA) - were characterised for PPARα and AIP expression by real time RT-PCR and/or immunohistochemistry (IHC), and the effects of fenofibrate and WY 14 643 on MMQ cells were studied in vitro. PPARα was expressed in a majority of PA. PPARα immunostaining was observed in 93.7% PRL-PA vs. 60.6% NFPA (p=0.016), the opposite being found for AIP (83.3% in NFPA vs. 43.7% in PRL-PA, p=0.003). PPARα expression was unrelated to gonadotroph differentiation in NFPA, but positively correlated with tumour volume in PRL-PA. Both drugs significantly reduced MMQ cell growth at high concentrations (100-200 µM). At the same time, despite modest stimulating effects on PRL secretion were observed, these were overcome by the reduction in cell number. In conclusion, PPARα is commonly expressed by PRL-PA and NFPA, regardless of AIP, and may represent a new target of PPARα agonists.


Assuntos
Fenofibrato/farmacologia , PPAR alfa/genética , Neoplasias Hipofisárias/genética , Pirimidinas/farmacologia , Adolescente , Adulto , Idoso , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , PPAR alfa/agonistas , PPAR alfa/metabolismo , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Neoplasias Hipofisárias/fisiopatologia , Prolactinoma/genética , Prolactinoma/metabolismo , Prolactinoma/fisiopatologia , Somatotrofos/metabolismo , Adulto Jovem
14.
Environ Toxicol ; 33(11): 1160-1167, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30218594

RESUMO

Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence other approaches have been investigated to target more pathways involved in glioblastoma development and progression. Here we investigate the anticancer effect of Aloe-Emodin (AE), an anthraquinone compound presents in the leaves of Aloe arborescens, on human glioblastoma cell line U87MG. U87MG were treated with various concentrations of AE (20 and 40 µM) for different times (24, 48, and 72 hr). Cell growth was monitored by daily cell count after treatments. Growth analysis showed that AE significantly decrease proliferation of U87MG in a time and dose dependent manner. FACS analysis demonstrates a block of cell cycle in S and G2/M phase. AE probably induced also apoptosis by releasing of apoptosis-inducing factor: PARP and Lamin activation leading to nuclear shrinkage. In addition, exposure of U87MG to AE reduced pAKT phosphorylation. AE inhibition of U87MG growth is a result of more mechanism together. Here we report that AE has a specific growth inhibition on U87MG also in in vivo. The growth of U87MG, subcutaneously injected in nude mice with severe combined immunodeficiency, is inhibited without any appreciable toxic effects on the animals after AE treatment. AE might represent a conceptually new lead antitumor adjuvant drug.


Assuntos
Antraquinonas/farmacologia , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Adulto , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Environ Toxicol ; 32(9): 2113-2123, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28618133

RESUMO

Hispolon is a polyphenolic compound isolated from Phellinus linteus which exhibits antitumor activity. Here, we explored the effects of hispolon on human glioblastoma cells U87MG. Cell viability was examined by MTT assay. Growth was investigated by incubating cells with various concentrations of hispolon (25 and 50 µM) for 24, 48 or 72 h and daily cell count. Cell cycle and apoptosis assay were assessed by flow cytometry. Hispolon decreased cell viability in a dose- and time-dependent manner. The cell cycle distribution showed that hispolon enhanced the accumulation of the cells in G2/M phase. Hispolon decreased the expression of G1-S transition-related protein cyclin D4 but increased the expression of CDK inhibitor p21. Additionally, hispolon enhanced the expression of p53. Moreover, hispolon treatment was effective on U87MG cells in inhibiting cell viability and inducing cell apoptosis. Our results indicate that hispolon inhibits the cell viability, induces G2/M cell cycle arrest and apoptosis in glioblastoma U87MG cells, and p53 should play a role in hispolon-mediated antitumor activity.


Assuntos
Antineoplásicos/farmacologia , Catecóis/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glioblastoma , Humanos , Proteína Supressora de Tumor p53/metabolismo
16.
Curr Neuropharmacol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509672

RESUMO

BACKGROUND: Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal. OBJECTIVE: Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine. METHODS: Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas. RESULTS: The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature. CONCLUSION: Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.

17.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535801

RESUMO

Ribosome inactivating proteins (RIPs) are specific N-ß-glycosylases that are well-characterized in plants. Their enzymatic action is to damage ribosomes, thereby blocking protein translation. Recently, several research groups have been working on the screening for these toxins in edible plants to facilitate the use of RIPs as biotechnological tools and biopesticides and to overcome public prejudice. Here, four novel monomeric (type 1) RIPs have been isolated from the seeds of Atriplex hortensis L. var. rubra, which is commonly known as edible red mountain spinach. These enzymes, named hortensins 1, 2, 4, and 5, are able to release the ß-fragment and, like many other RIPs, adenines from salmon sperm DNA, thus, acting as polynucleotide:adenosine glycosidases. Structurally, hortensins have a different molecular weight and are purified with different yields (hortensin 1, ~29.5 kDa, 0.28 mg per 100 g; hortensin 2, ~29 kDa, 0.29 mg per 100 g; hortensin 4, ~28.5 kDa, 0.71 mg per 100 g; and hortensin 5, ~30 kDa, 0.65 mg per 100 g); only hortensins 2 and 4 are glycosylated. Furthermore, the major isoforms (hortensins 4 and 5) are cytotoxic toward human continuous glioblastoma U87MG cell line. In addition, the morphological change in U87MG cells in the presence of these toxins is indicative of cell death triggered by the apoptotic pathway, as revealed by nuclear DNA fragmentation (TUNEL assay).


Assuntos
Atriplex , Proteínas Inativadoras de Ribossomos Tipo 1 , Sementes , Humanos , Glioblastoma , Ribossomos , Proteínas de Plantas , Linhagem Celular Tumoral
18.
Endocr Pathol ; 35(1): 1-13, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095839

RESUMO

Since 2017, hormone-negative pituitary neuroendocrine tumors expressing the steroidogenic factor SF1 have been recognized as gonadotroph tumors (GnPT) but have been poorly studied. To further characterize their bio-clinical spectrum, 54 GnPT defined by immunostaining for FSH and/or LH (group 1, n = 41) or SF1 only (group 2, n = 13) were compared and studied for SF1, ßFSH, ßLH, CCNA2, CCNB1, CCND1, caspase 3, D2R, and AIP gene expression by qRT-PCR. Immunohistochemistry for AIP and/or D2R was performed in representative cases. Overall, patients were significantly younger in group 1 (P = 0.040 vs group 2), with a similar trend excluding recurrent cases (P = 0.078), and no significant difference in gender, tumor size, invasion or Ki67. SF1 expression was similar in both groups but negatively correlated with the patient's age (P = 0.013) and positively correlated with ßLH (P < 0.001) expression. Beta-FSH and AIP were significantly higher in group 1 (P = 0.042 and P = 0.024, respectively). Ki67 was unrelated to gonadotroph markers but positively correlated with CCNB1 (P = 0.001) and negatively correlated with CCND1 (P = 0.008). D2R and AIP were strongly correlated with each other (P < 0.001), and both positively correlated with SF1, ßFSH, ßLH, and CCND1. AIP immunopositivity was frequently observed in both groups, with a similar median score, and unrelated to Ki67. D2R immunostaining was best detected with a polyclonal antibody and mostly cytoplasmic. This study indicates that hormone-negative GnPT tend to occur in older patients but do not significantly differ from other GnPT in terms of invasion or proliferation. It also points out the current limits of D2R immunostaining in such tumors.


Assuntos
Gonadotrofos , Neoplasias Hipofisárias , Humanos , Idoso , Neoplasias Hipofisárias/patologia , Gonadotrofos/metabolismo , Gonadotrofos/patologia , Antígeno Ki-67/metabolismo , Hormônio Foliculoestimulante , Organização Mundial da Saúde
19.
Biology (Basel) ; 13(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534441

RESUMO

Pituitary neuroendocrine tumors (PitNETs) are generally benign but comprise an aggressive, invasive, therapy-resistant, metastatic subset, underpinning a need for novel therapeutic targets. PitNETs exhibit low mutation rates but are associated with conditions linked to alternative splicing, an alternative oncogene pathway activation mechanism. PitNETs express the neurotrophin receptor TrkA, which exhibits oncogenic alternative TrkAIII splicing in other neuroendocrine tumors. We, therefore, assessed whether TrkAIII splicing represents a potential oncogenic participant in PitNETs. TrkAIII splicing was RT-PCR assessed in 53 PitNETs and TrkA isoform(s) expression and activation were assessed by confocal immunofluorescence. TrkAIII splicing was also compared to HIF1α, HIF2α, SF3B1, SRSF2, U2AF1, and JCPyV large T antigen mRNA expression, Xbp1 splicing, and SF3B1 mutation. TrkAIII splicing was detected in all invasive and most non-invasive PitNETs and was significantly elevated in invasive cases. In PitNET lineages, TrkAIII splicing was significantly elevated in invasive PIT1 PitNETs and high in invasive and non-invasive SF1 and TPIT lineages. Immunoreactivity consistent with TrkAIII activation characterized PitNET expressing TrkAIII mRNA, and invasive Pit1 PitNETs exhibited elevated HIF2α expression. TrkAIII splicing did not associate with SF3B1 mutations, altered SF3B1, SRSF2, and U2AF1 or JCPyV large T antigen expression, or Xbp1 splicing. Therefore, TrkAIII splicing is common in PitNETs, is elevated in invasive, especially PIT1 tumors, can result in intracellular TrkAIII activation, and may involve hypoxia. The data support a role for TrkAIII splicing in PitNET pathogenesis and progression and identify TrkAIII as a novel potential target in refractory PitNETs.

20.
Neuropathology ; 32(2): 133-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21978279

RESUMO

The Ras signaling pathway, consisting of mitogen-activated protein kinase (MAPK) and PI3K/AKT signaling, is a prominent oncogenic pathways in adult diffuse gliomas, but few studies have evaluated such pathways in pediatric malignant gliomas. We investigated by immunohistochemistry MAPK and AKT signaling in a series of 28 pediatric high-grade gliomas (WHO grade III and IV). We sought a possible association of phospho-ERK (p-ERK) and phospho-AKT (p-AKT) with expression of other proteins involved in the Ras pathway, that is, YKL40, epidermal growth factor receptor (EGFR), EGFR vIII and c-Met. Moreover we correlated the expression of p-ERK and p-AKT with prognosis. No cases showed expression for c-Met and EGFR, and only one case was positive for EGFR vIII. YKL-40 protein was expressed in 43% of cases. We detected expression of p-ERK and p-AKT in 61% and 57%, respectively, of pediatric high grade gliomas. Statistical analysis comparing the two groups in term of high and low p-ERK and p-AKT expression showed a trend toward worse overall survival in patients with high expression of p-AKT. The activation of ERK and AKT suggest a possible role of this protein in inducing activation of the Ras signaling pathway in pediatric high-grade gliomas. Moreover high levels of p-AKT are associated with worse overall survival.


Assuntos
Adipocinas/biossíntese , Astrocitoma/diagnóstico , Astrocitoma/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Lectinas/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Adipocinas/metabolismo , Adolescente , Astrocitoma/enzimologia , Criança , Pré-Escolar , Proteína 1 Semelhante à Quitinase-3 , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Seguimentos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Lectinas/metabolismo , Masculino , Fosforilação/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA