Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 597(7877): 566-570, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526715

RESUMO

Numerous post-transcriptional modifications of transfer RNAs have vital roles in translation. The 2-methylthio-N6-isopentenyladenosine (ms2i6A) modification occurs at position 37 (A37) in transfer RNAs that contain adenine in position 36 of the anticodon, and serves to promote efficient A:U codon-anticodon base-pairing and to prevent unintended base pairing by near cognates, thus enhancing translational fidelity1-4. The ms2i6A modification is installed onto isopentenyladenosine (i6A) by MiaB, a radical S-adenosylmethionine (SAM) methylthiotransferase. As a radical SAM protein, MiaB contains one [Fe4S4]RS cluster used in the reductive cleavage of SAM to form a 5'-deoxyadenosyl 5'-radical, which is responsible for removing the C2 hydrogen of the substrate5. MiaB also contains an auxiliary [Fe4S4]aux cluster, which has been implicated6-9 in sulfur transfer to C2 of i6A37. How this transfer takes place is largely unknown. Here we present several structures of MiaB from Bacteroides uniformis. These structures are consistent with a two-step mechanism, in which one molecule of SAM is first used to methylate a bridging µ-sulfido ion of the auxiliary cluster. In the second step, a second SAM molecule is cleaved to a 5'-deoxyadenosyl 5'-radical, which abstracts the C2 hydrogen of the substrate but only after C2 has undergone rehybridization from sp2 to sp3. This work advances our understanding of how enzymes functionalize inert C-H bonds with sulfur.


Assuntos
Bacteroides/enzimologia , Metiltransferases/química , RNA de Transferência/química , RNA de Transferência/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfurtransferases/química , Adenosina/análogos & derivados , Adenosina/metabolismo , Sítios de Ligação , Biocatálise , Isopenteniladenosina/metabolismo , Metiltransferases/metabolismo , Modelos Moleculares , Domínios Proteicos , RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Sulfurtransferases/metabolismo
2.
J Am Chem Soc ; 142(4): 1911-1924, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31899624

RESUMO

The enzyme MiaB catalyzes the attachment of a methylthio (-SCH3) group at the C2 position of N6-(isopentenyl)adenosine (i6A) in the final step of the biosynthesis of the hypermodified tRNA nucleotide 2-methythio-N6-(isopentenyl)adenosine (ms2i6A). MiaB belongs to the expanding subgroup of enzymes of the radical S-adenosylmethionine (SAM) superfamily that harbor one or more auxiliary [4Fe-4S] clusters in addition to the [4Fe-4S] cluster that all family members require for the reductive cleavage of SAM to afford the common 5'-deoxyadenosyl 5'-radical (5'-dA•) intermediate. While the role of the radical SAM cluster in generating the 5'-dA• is well understood, the detailed role of the auxiliary cluster, which is essential for MiaB catalysis, remains unclear. It has been proposed that the auxiliary cluster may serve as a coordination site for exogenously derived sulfur destined for attachment to the substrate or that the cluster itself provides the sulfur atom and is sacrificed during turnover. In this work, we report spectroscopic and biochemical evidence that the auxiliary [4Fe-4S]2+ cluster in Bacteroides thetaiotaomicron (Bt) MiaB is converted to a [3Fe-4S]0-like cluster during the methylation step of catalysis. Mössbauer characterization of the MiaB [3Fe-4S]0-like cluster revealed unusual spectroscopic properties compared to those of other well-characterized cuboidal [3Fe-4S]0 clusters. Specifically, the Fe sites of the mixed-valent moiety do not have identical Mössbauer parameters. Our results support a mechanism where the auxiliary [4Fe-4S] cluster is the direct sulfur source during catalysis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sulfurtransferases/metabolismo , Catálise , Espectroscopia de Mossbauer , Especificidade por Substrato
3.
Biochemistry ; 55(39): 5531-5536, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27598886

RESUMO

The methylthiotransferases (MTTases) represent a subfamily of the S-adenosylmethionine (AdoMet) radical superfamily of enzymes that catalyze the attachment of a methylthioether (-SCH3) moiety on unactivated carbon centers. These enzymes contain two [4Fe-4S] clusters, one of which participates in the reductive fragmentation of AdoMet to generate a 5'-deoxyadenosyl 5'-radical and the other of which, termed the auxiliary cluster, is believed to play a central role in constructing the methylthio group and attaching it to the substrate. Because the redox properties of the bound cofactors within the AdoMet radical superfamily are so poorly understood, we have examined two MTTases in parallel, MiaB and RimO, using protein electrochemistry. We resolve the redox potentials of each [4Fe-4S] cluster, show that the auxiliary cluster has a potential higher than that of the AdoMet-binding cluster, and demonstrate that upon incubation of either enzyme with AdoMet, a unique low-potential state of the enzyme emerges. Our results are consistent with a mechanism whereby the auxiliary cluster is transiently methylated during substrate methylthiolation.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Metiltransferases/metabolismo , Clonagem Molecular , Técnicas Eletroquímicas
4.
J Am Chem Soc ; 135(41): 15404-15416, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23991893

RESUMO

RimO and MiaB are radical S-adenosylmethionine (SAM) enzymes that catalyze the attachment of methylthio (-SCH3) groups to macromolecular substrates. RimO attaches a methylthio group at C3 of aspartate 89 of protein S12, a component of the 30S subunit of the bacterial ribosome. MiaB attaches a methylthio group at C2 of N(6)-(isopentenyl)adenosine, found at nucleotide 37 in several prokaryotic tRNAs. These two enzymes are prototypical members of a subclass of radical SAM enzymes called methylthiotransferases (MTTases). It had been assumed that the sequence of steps in MTTase reactions involves initial sulfur insertion into the organic substrate followed by capping of the inserted sulfur atom with a SAM-derived methyl group. In this work, however, we show that both RimO and MiaB from Thermotoga maritima catalyze methyl transfer from SAM to an acid/base labile acceptor on the protein in the absence of their respective macromolecular substrates. Consistent with the assignment of the acceptor as an iron-sulfur cluster, denaturation of the SAM-treated protein with acid results in production of methanethiol. When RimO or MiaB is first incubated with SAM in the absence of substrate and reductant and then incubated with excess S-adenosyl-l-[methyl-d3]methionine in the presence of substrate and reductant, production of the unlabeled product precedes production of the deuterated product, showing that the methylated species is chemically and kinetically competent to be an intermediate.


Assuntos
Proteínas de Bactérias/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Thermotoga maritima/enzimologia , Proteínas de Bactérias/química , Biocatálise , Radicais Livres/química , Radicais Livres/metabolismo , Metilação , Estrutura Molecular , S-Adenosilmetionina/química , Compostos de Sulfidrila/química
5.
Protein Sci ; 28(1): 267-282, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30394621

RESUMO

MiaB is a member of the methylthiotransferase subclass of the radical S-adenosylmethionine (SAM) superfamily of enzymes, catalyzing the methylthiolation of C2 of adenosines bearing an N6 -isopentenyl (i6 A) group found at position 37 in several tRNAs to afford 2-methylthio-N6 -(isopentenyl)adenosine (ms2 i6 A). MiaB uses a reduced [4Fe-4S]+ cluster to catalyze a reductive cleavage of SAM to generate a 5'-deoxyadenosyl 5'-radical (5'-dA•)-a required intermediate in its reaction-as well as an additional [4Fe-4S]2+ auxiliary cluster. In Escherichia coli and many other organisms, re-reduction of the [4Fe-4S]2+ cluster to the [4Fe-4S]+ state is accomplished by the flavodoxin reducing system. Most mechanistic studies of MiaBs have been carried out on the enzyme from Thermotoga maritima (Tm), which lacks the flavodoxin reducing system, and which is not activated by E. coli flavodoxin. However, the genome of this organism encodes five ferredoxins (TM0927, TM1175, TM1289, TM1533, and TM1815), each of which might donate the requisite electron to MiaB and perhaps to other radical SAM enzymes. The genes encoding each of these ferredoxins were cloned, and the associated proteins were isolated and shown to support turnover by Tm MiaB. In addition, TM1639, the ferredoxin-NADP+ oxidoreductase subunit α (NfnA) from Tm was overproduced and isolated and shown to provide electrons to the Tm ferredoxins during Tm MiaB turnover. The resulting reactions demonstrate improved coupling between formation of the 5'-dA• and ms2 i6 A production, indicating that only one hydrogen atom abstraction is required for the reaction.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Sulfurtransferases/metabolismo , Thermotoga maritima/enzimologia , Transporte de Elétrons/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ferredoxinas/genética , Ferredoxinas/metabolismo , Sulfurtransferases/genética , Thermotoga maritima/genética
6.
Protein Sci ; 28(1): 257-266, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418685

RESUMO

Most organisms contain multiple soluble protein-based redox carriers such as members of the ferredoxin (Fd) family, that contain one or more iron-sulfur clusters. The potential redundancy of Fd proteins is poorly understood, particularly in connection to the ability of Fd proteins to deliver reducing equivalents to members of the "radical SAM," or S-adenosylmethionine radical enzyme (ARE) superfamily, where the activity of all known AREs requires that an essential iron-sulfur cluster bound by the enzyme be reduced to the catalytically relevant [Fe4 S4 ]1+ oxidation state. As it is still unclear whether a single Fd in a given organism is specific to individual redox partners, we have examined the five Fd proteins found within Thermotoga maritima via direct electrochemistry, to compare them in a side-by-side fashion for the first time. While a single [Fe4 S4 ]-cluster bearing Fd (TM0927) has a potential of -420 mV, the other four 2x[Fe4 S4 ]-bearing Fds (TM1175, TM1289, TM1533, and TM1815) have potentials that vary significantly, including cases where the two clusters of the same Fd are essentially coincident (e.g., TM1175) and those where the potentials are well separate (TM1815).


Assuntos
Ferredoxinas/química , Thermotoga maritima/química , Ferredoxinas/metabolismo , Oxirredução , Thermotoga maritima/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA