Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Am J Physiol Heart Circ Physiol ; 322(1): H105-H115, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34860595

RESUMO

Maladaptation of the sympathetic nervous system contributes to the progression of cardiovascular disease and risk for sudden cardiac death, the leading cause of mortality worldwide. Axonal modulation therapy (AMT) directed at the paravertebral chain blocks sympathetic efferent outflow to the heart and maybe a promising strategy to mitigate excess disease-associated sympathoexcitation. The present work evaluates AMT, directed at the sympathetic chain, in blocking sympathoexcitation using a porcine model. In anesthetized porcine (n = 14), we applied AMT to the right T1-T2 paravertebral chain and performed electrical stimulation of the distal portion of the right sympathetic chain (RSS). RSS-evoked changes in heart rate, contractility, ventricular activation recovery interval (ARI), and norepinephrine release were examined with and without kilohertz frequency alternating current block (KHFAC). To evaluate efficacy of AMT in the setting of sympathectomy, evaluations were performed in the intact state and repeated after left and bilateral sympathectomy. We found strong correlations between AMT intensity and block of sympathetic stimulation-evoked changes in cardiac electrical and mechanical indices (r = 0.83-0.96, effect size d = 1.9-5.7), as well as evidence of sustainability and memory. AMT significantly reduced RSS-evoked left ventricular interstitial norepinephrine release, as well as coronary sinus norepinephrine levels. Moreover, AMT remained efficacious following removal of the left sympathetic chain, with similar mitigation of evoked cardiac changes and reduction of catecholamine release. With growth of neuromodulation, an on-demand or reactionary system for reversible AMT may have therapeutic potential for cardiovascular disease-associated sympathoexcitation.NEW & NOTEWORTHY Autonomic imbalance and excess sympathetic activity have been implicated in the pathogenesis of cardiovascular disease and are targets for existing medical therapy. Neuromodulation may allow for control of sympathetic projections to the heart in an on-demand and reversible manner. This study provides proof-of-concept evidence that axonal modulation therapy (AMT) blocks sympathoexcitation by defining scalability, sustainability, and memory properties of AMT. Moreover, AMT directly reduces release of myocardial norepinephrine, a mediator of arrhythmias and heart failure.


Assuntos
Axônios/metabolismo , Coração/fisiologia , Sistema Nervoso Simpático/fisiologia , Transmissão Sináptica , Animais , Axônios/fisiologia , Catecolaminas/metabolismo , Estimulação Elétrica , Feminino , Coração/inervação , Frequência Cardíaca , Masculino , Contração Miocárdica , Norepinefrina/metabolismo , Suínos , Sistema Nervoso Simpático/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 320(1): H66-H76, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095651

RESUMO

Sympathetic control of regional cardiac function occurs through postganglionic innervation from stellate ganglia and thoracic sympathetic chain. Whereas norepinephrine (NE) is their primary neurotransmitter, neuropeptide Y (NPY) is an abundant cardiac cotransmitter. NPY plays a vital role in homeostatic processes including angiogenesis, vasoconstriction, and cardiac remodeling. Elevated sympathetic stress, resulting in increased NE and NPY release, has been implicated in the pathogenesis of several cardiovascular disorders including hypertension, myocardial infarction, heart failure, and arrhythmias, which may result in sudden cardiac death. Current methods for the detection of NPY in myocardium are limited in their spatial and temporal resolution and take days to weeks to provide results [e.g., interstitial microdialysis with subsequent analysis by enzyme-linked immunosorbent assay (ELISA), high performance liquid chromatography (HPLC), or mass spectrometry]. In this study, we report a novel approach for measurement of interstitial and intravascular NPY using a minimally invasive capacitive immunoprobe (C.I. probe). The first high-spatial and temporal resolution, multichannel measurements of NPY release in vivo are provided in both myocardium and transcardiac vascular space in a beating porcine heart. We provide NPY responses evoked by sympathetic stimulation and ectopic ventricular pacing and compare these to NE release and hemodynamic responses. We extend this approach to measure both NPY and vasoactive intestinal peptide (VIP) and show differential release profiles under sympathetic stimulation. Our data demonstrate rapid and local changes in neurotransmitter profiles in response to sympathetic cardiac stressors. Future implementations include real-time intraoperative determination of cardiac neuropeptides and deployment as a minimally invasive catheter.NEW & NOTEWORTHY The sympathetic nervous system regulates cardiac function through release of neurotransmitters and neuropeptides within the myocardium. Neuropeptide Y (NPY) acts as an acute cardiac vasoconstrictor and chronically to regulate angiogenesis and cardiac remodeling. Current methodologies for the measure of NPY are not capable of providing rapid readouts on a single-sample basis. Here we provide the first in vivo methodology to report dynamic, localized NPY levels within both myocardium and vascular compartments in a beating heart.


Assuntos
Técnicas Eletroquímicas , Coração/inervação , Miocárdio/metabolismo , Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Estimulação Cardíaca Artificial , Estimulação Elétrica , Masculino , Norepinefrina/metabolismo , Processamento de Sinais Assistido por Computador , Sus scrofa , Fatores de Tempo
4.
Physiology (Bethesda) ; 34(2): 150-162, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724129

RESUMO

Autonomic nerves are attractive targets for medical therapies using electroceutical devices because of the potential for selective control and few side effects. These devices use novel materials, electrode configurations, stimulation patterns, and closed-loop control to treat heart failure, hypertension, gastrointestinal and bladder diseases, obesity/diabetes, and inflammatory disorders. Critical to progress is a mechanistic understanding of multi-level controls of target organs, disease adaptation, and impact of neuromodulation to restore organ function.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Cardiopatias/terapia , Animais , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/terapia , Terapia por Estimulação Elétrica/instrumentação , Gastroenteropatias/fisiopatologia , Gastroenteropatias/terapia , Cardiopatias/fisiopatologia , Humanos , Inflamação/fisiopatologia , Inflamação/terapia , Obesidade/fisiopatologia , Obesidade/terapia , Estimulação da Medula Espinal/instrumentação , Estimulação da Medula Espinal/métodos , Doenças da Bexiga Urinária/fisiopatologia , Doenças da Bexiga Urinária/terapia , Estimulação do Nervo Vago/instrumentação , Estimulação do Nervo Vago/métodos
5.
Am J Physiol Heart Circ Physiol ; 318(5): H1091-H1099, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216617

RESUMO

The sympathetic nervous system modulates cardiac function by controlling key parameters such as chronotropy and inotropy. Sympathetic control of ventricular function occurs through extrinsic innervation arising from the stellate ganglia and thoracic sympathetic chain. In the healthy heart, sympathetic release of norepinephrine (NE) results in positive modulation of chronotropy, inotropy, and dromotropy, significantly increasing cardiac output. However, in the setting of myocardial infarction or injury, sympathetic activation persists, contributing to heart failure and increasing the risk of arrhythmias, including sudden cardiac death. Methodologies for detection of norepinephrine in cardiac tissue are limited. Present techniques rely on microdialysis for analysis by high-performance liquid chromatography coupled to electrochemical detection (HPLC-ED), radioimmunoassay, or other immunoassays, such as enzyme-linked immunosorbent assay (ELISA). Although significant information about the release and action of norepinephrine has been obtained with these methodologies, they are limited in temporal resolution, require large sample volumes, and provide results with a significant delay after sample collection (hours to weeks). In this study, we report a novel approach for measurement of interstitial cardiac norepinephrine, using minimally invasive, electrode-based, fast-scanning cyclic voltammetry (FSCV) applied in a beating porcine heart. The first multispatial and high temporal resolution, multichannel measurements of NE release in vivo are provided. Our data demonstrate rapid changes in interstitial NE profiles with regional differences in response to coronary ischemia, sympathetic nerve stimulation, and alterations in preload/afterload.NEW & NOTEWORTHY Pharmacological, electrical, or surgical regulation of sympathetic neuronal control can be used to modulate cardiac function and treat arrhythmias. However, present methods for monitoring sympathetic release of norepinephrine in the heart are limited in spatial and temporal resolution. Here, we provide for the first time a methodology and demonstration of practice and rapid measures of individualized regional autonomic neurotransmitter levels in a beating heart. We show dynamic, spatially resolved release profiles under normal and pathological conditions.


Assuntos
Técnicas Eletrofisiológicas Cardíacas/métodos , Coração/fisiologia , Miocárdio/metabolismo , Norepinefrina/análise , Amplificadores Eletrônicos/normas , Animais , Eletrodos/normas , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Feminino , Masculino , Contração Miocárdica , Miocárdio/química , Norepinefrina/metabolismo , Sensibilidade e Especificidade , Suínos
6.
Am J Physiol Heart Circ Physiol ; 318(4): H830-H839, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108524

RESUMO

Inherent and acquired factors determine the integrated autonomic response to cardiovascular stressors. Excessive sympathoexcitation to ischemic stress is a major contributor to the potential for sudden cardiac death. To define fundamental aspects of cardiac-related autonomic neural network interactions within the thoracic cord, specifically as related to modulating sympathetic preganglionic (SPN) neural activity. Adult, anesthetized Yorkshire pigs (n = 10) were implanted with penetrating high-density microarrays (64 electrodes) at the T2 level of the thoracic spinal cord to record extracellular potentials concurrently from left-sided dorsal horn (DH) and SPN neurons. Electrical stimulation of the T2 paravertebral chain allowed for antidromic identification of SPNs located in the intermediolateral cell column (57 of total 1,760 recorded neurons). Cardiac stressors included epicardial touch, occlusion of great vessels to transiently alter preload/afterload, and transient occlusion of the left anterior descending coronary artery (LAD). Spatial/temporal assessment of network interactions was characterized by cross-correlation analysis. While some DH neurons responded solely to changes in preload/afterload (8.5 ± 1.9%) or ischemic stress (10.5 ± 3.9%), the majority of cardiovascular-related DH neurons were multimodal (30.2 ± 4.7%) with ischemia sensitivity being one of the modalities (26.1 ± 4.7%). The sympathoexcitation associated with transient LAD occlusion was associated with increased correlations from baseline within DH neurons (2.43 ± 0.61 to 7.30 ± 1.84%, P = 0.04) and between SPN to DH neurons (1.32 ± 0.78 to 7.24 ± 1.84%, P = 0.02). DH to SPN network correlations were reduced during great vessel occlusion. In conclusion, increased intrasegmental network coherence within the thoracic spinal cord contributes to myocardial ischemia-induced sympathoexcitation.NEW & NOTEWORTHY In an in vivo pig model, we demonstrate using novel high-resolution neural electrode arrays that increased intrasegmental network coherence within the thoracic spinal cord contributes to myocardial ischemia-induced sympathoexcitation.


Assuntos
Coração/inervação , Rede Nervosa/fisiologia , Corno Dorsal da Medula Espinal/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Fibras Autônomas Pré-Ganglionares/fisiologia , Feminino , Coração/fisiologia , Masculino , Estresse Fisiológico , Suínos
7.
Am J Physiol Heart Circ Physiol ; 317(5): H1134-H1141, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31538809

RESUMO

Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. The study objective was to determine whether thoracic spinal dorsal column stimulation (SCS) modulates cardiac afferent sensory transduction of the ischemic ventricle. In anesthetized canines (n = 16), extracellular activity generated by 62 dorsal root ganglia (DRG) soma (T1-T3), with verified myocardial ischemic (MI) sensitivity, were evaluated with and without 20-min preemptive SCS (T1-T3 spinal level; 50 Hz, 90% motor threshold). Transient MI was induced by 1-min coronary artery occlusion (CAO) of the left anterior descending (LAD) or circumflex (LCX) artery, randomized as to sequence. LAD and LCX CAO activated cardiac-related DRG neurons (LAD: 0.15 ± 0.04-1.05 ± 0.20 Hz, P < 0.00002; LCX: 0.08 ± 0.02-1.90 ± 0.45 Hz, P < 0.0003). SCS decreased basal neuronal activity of neurons that responded to LAD (0.15 ± 0.04 to 0.02 ± 0.01 Hz, P < 0.006) and LCX (0.08 ± 0.02 to 0.02 ± 0.01 Hz, P < 0.003). SCS suppressed responsiveness to transient MI (LAD: 1.05 ± 0.20-0.03 ± 0.01 Hz; P < 0.0001; LCX: 1.90 ± 0.45-0.03 ± 0.01 Hz; P < 0.001). Suprathreshold SCS (1 Hz) did not activate DRG neurons antidromically (n = 10 animals). Ventricular fibrillation (VF) was associated with a rapid increase in DRG activity to a maximum of 4.39 ± 1.07 Hz at 20 s after VF induction and a return to 90% of baseline within 10 s thereafter. SCS obtunds the capacity of DRG ventricular neurites to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress, thereby contributing to its capacity to cardioprotect.NEW & NOTEWORTHY Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. This study determined that thoracic spinal column stimulation (SCS) obtunds the capacity of dorsal root ganglia ventricular afferent neurons to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress. This modulation does not reflect antidromic actions of SCS but likely reflects efferent-mediated changes at the myocyte-sensory neurite interface.


Assuntos
Gânglios Espinais/fisiopatologia , Ventrículos do Coração/inervação , Infarto do Miocárdio/terapia , Reflexo , Células Receptoras Sensoriais , Estimulação da Medula Espinal , Potenciais de Ação , Animais , Modelos Animais de Doenças , Cães , Feminino , Masculino , Infarto do Miocárdio/fisiopatologia , Fibrilação Ventricular/fisiopatologia , Fibrilação Ventricular/prevenção & controle
8.
Am J Physiol Heart Circ Physiol ; 317(3): H607-H616, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31322427

RESUMO

Mechanisms behind development of premature ventricular contraction (PVC)-induced cardiomyopathy remain unclear. PVCs may adversely modulate the autonomic nervous system to promote development of heart failure. Afferent neurons in the inferior vagal (nodose) ganglia transduce cardiac activity and modulate parasympathetic output. Effects of PVCs on cardiac parasympathetic efferent and vagal afferent neurotransmission are unknown. The purpose of this study was to evaluate effects of PVCs on vagal afferent neurotransmission and compare these effects with a known powerful autonomic modulator, myocardial ischemia. In 16 pigs, effects of variably coupled PVCs on heart rate variability (HRV) and vagal afferent neurotransmission were evaluated. Direct nodose neuronal recordings were obtained in vivo, and cardiac-related afferent neurons were identified based on their response to cardiovascular interventions, including ventricular chemical and mechanical stimuli, left anterior descending (LAD) coronary artery occlusion, and variably coupled PVCs. On HRV analysis before versus after PVCs, parasympathetic tone decreased (normalized high frequency: 83.6 ± 2.8 to 72.5 ± 5.3; P < 0.05). PVCs had a powerful impact on activity of cardiac-related afferent neurons, altering activity of 51% of neurons versus 31% for LAD occlusion (P < 0.05 vs. LAD occlusion and all other cardiac interventions). Both chemosensitive and mechanosensitive neurons were activated by PVCs, and their activity remained elevated even after cessation of PVCs. Cardiac afferent neural responses to PVCs were greater than any other intervention, including ischemia of similar duration. These data suggest that even brief periods of PVCs powerfully modulate vagal afferent neurotransmission, reflexly decreasing parasympathetic efferent tone.NEW & NOTEWORTHY Premature ventricular contractions (PVCs) are common in many patients and, at an increased burden, are known to cause heart failure. This study determined that PVCs powerfully modulate cardiac vagal afferent neurotransmission (exerting even greater effects than ventricular ischemia) and reduce parasympathetic efferent outflow to the heart. PVCs activated both mechano- and chemosensory neurons in the nodose ganglia. These peripheral neurons demonstrated adaptation in response to PVCs. This study provides additional data on the potential role of the autonomic nervous system in PVC-induced cardiomyopathy.


Assuntos
Cardiomiopatias/etiologia , Frequência Cardíaca , Coração/inervação , Contração Miocárdica , Nervo Vago/fisiopatologia , Complexos Ventriculares Prematuros/complicações , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Células Quimiorreceptoras/metabolismo , Modelos Animais de Doenças , Mecanorreceptores/metabolismo , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Gânglio Nodoso/metabolismo , Gânglio Nodoso/fisiopatologia , Sus scrofa , Transmissão Sináptica , Fatores de Tempo , Nervo Vago/metabolismo , Complexos Ventriculares Prematuros/metabolismo , Complexos Ventriculares Prematuros/fisiopatologia
9.
Am J Physiol Heart Circ Physiol ; 317(6): H1328-H1341, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625779

RESUMO

Patients with type 2 diabetes mellitus (T2DM) have a greater risk of developing life-threatening cardiac arrhythmias. Because the underlying mechanisms and potential influence of diabetic autonomic neuropathy are not well understood, we aimed to assess the relevance of a dysregulation in cardiac autonomic tone. Ventricular arrhythmia susceptibility was increased in Langendorff-perfused hearts isolated from mice with T2DM (db/db). Membrane properties and synaptic transmission were similar at cardiac postganglionic parasympathetic neurons from diabetic and control mice; however, a greater asynchronous neurotransmitter release was present at sympathetic postganglionic neurons from the stellate ganglia of db/db mice. Western blot analysis showed a reduction of tyrosine hydroxylase (TH) from the ventricles of db/db mice, which was confirmed with confocal imaging as a heterogeneous loss of TH-immunoreactivity from the left ventricular wall but not the apex. In vivo stimulation of cardiac parasympathetic (vagus) or cardiac sympathetic (stellate ganglion) nerves induced similar changes in heart rate in control and db/db mice, and the kinetics of pacing-induced Ca2+ transients (recorded from isolated cardiomyocytes) were similar in control and db/db cells. Antagonism of cardiac muscarinic receptors did not affect the frequency or severity of arrhythmias in db/db mice, but sympathetic blockade with propranolol completely inhibited arrhythmogenicity. Collectively, these findings suggest that the increased ventricular arrhythmia susceptibility of type 2 diabetic mouse hearts is due to dysregulation of the sympathetic ventricular control.NEW & NOTEWORTHY Patients with type 2 diabetes mellitus have greater risk of suffering from sudden cardiac death. We found that the increased ventricular arrhythmia susceptibility in type 2 diabetic mouse hearts is due to cardiac sympathetic dysfunction. Sympathetic dysregulation is indicated by an increased asynchronous release at stellate ganglia, a heterogeneous loss of tyrosine hydroxylase from the ventricular wall but not apex, and inhibition of ventricular arrhythmias in db/db mice after ß-sympathetic blockade.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Fibras Simpáticas Pós-Ganglionares/fisiopatologia , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/etiologia , Sinalização do Cálcio , Cardiomiopatias Diabéticas/complicações , Frequência Cardíaca , Ventrículos do Coração/inervação , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Neurônios/metabolismo , Propranolol/farmacologia , Fibras Simpáticas Pós-Ganglionares/citologia , Fibras Simpáticas Pós-Ganglionares/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 314(5): H954-H966, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351450

RESUMO

Afferent fibers expressing the vanilloid receptor 1 (VR1) channel have been implicated in cardiac nociception; however, their role in modulating reflex responses to cardiac stress is not well understood. We evaluated this role in Yorkshire pigs by percutaneous epicardial application of resiniferatoxin (RTX), a toxic activator of the VR1 channel, resulting in the depletion of cardiac VR1-expressing afferents. Hemodynamics, epicardial activation recovery intervals, and in vivo activity of stellate ganglion neurons (SGNs) were recorded in control and RTX-treated animals. Stressors included inferior vena cava or aortic occlusion and rapid right ventricular pacing (RVP) to induce dyssynchrony and ischemia. In the epicardium, stellate ganglia, and dorsal root ganglia, immunostaining for the VR1 channel, calcitonin gene-related peptide, and substance P was significantly diminished by RTX. RTX-treated animals exhibited higher basal systolic blood pressures and contractility than control animals. Reflex responses to epicardial bradykinin and capsaicin were mitigated by RTX. Cardiovascular reflex function, as assessed by inferior vena cava or aortic occlusion, was similar in RTX-treated versus control animals. RTX-treated animals exhibited resistance to hemodynamic collapse induced by RVP. Activation recovery interval shortening during RVP, a marker of cardiac sympathetic outflow, was greater in RTX-treated animals and exhibited significant delay in returning to baseline values after cessation of RVP. The basal firing rate of SGNs and firing rates in response to RVP were also greater in RTX-treated animals, as was the SGN network activity in response to cardiac stressors. These data suggest that elimination of cardiac nociceptive afferents reorganizes the central-peripheral nervous system interaction to enhance cardiac sympathetic outflow. NEW & NOTEWORTHY Our work demonstrates a role for cardiac vanilloid receptor-1-expressing afferents in reflex processing of cardiovascular stress. Current understanding suggests that elimination of vanilloid receptor-1 afferents would decrease reflex cardiac sympathetic outflow. We found, paradoxically, that sympathetic outflow to the heart is instead enhanced at baseline and during cardiac stress.


Assuntos
Coração/inervação , Hemodinâmica , Isquemia Miocárdica/fisiopatologia , Gânglio Estrelado/fisiopatologia , Estresse Fisiológico , Sistema Nervoso Simpático/fisiopatologia , Canais de Cátion TRPV/metabolismo , Animais , Barorreflexo , Pressão Sanguínea , Modelos Animais de Doenças , Vias Eferentes/metabolismo , Vias Eferentes/fisiopatologia , Frequência Cardíaca , Isquemia Miocárdica/metabolismo , Nociceptores/metabolismo , Pressorreceptores/metabolismo , Pressorreceptores/fisiopatologia , Gânglio Estrelado/metabolismo , Sus scrofa , Sistema Nervoso Simpático/metabolismo , Canais de Cátion TRPV/agonistas
11.
J Physiol ; 595(22): 6887-6903, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28862330

RESUMO

KEY POINTS: The evoked cardiac response to bipolar cervical vagus nerve stimulation (VNS) reflects a dynamic interaction between afferent mediated decreases in central parasympathetic drive and suppressive effects evoked by direct stimulation of parasympathetic efferent axons to the heart. The neural fulcrum is defined as the operating point, based on frequency-amplitude-pulse width, where a null heart rate response is reproducibly evoked during the on-phase of VNS. Cardiac control, based on the principal of the neural fulcrum, can be elicited from either vagus. Beta-receptor blockade does not alter the tachycardia phase to low intensity VNS, but can increase the bradycardia to higher intensity VNS. While muscarinic cholinergic blockade prevented the VNS-induced bradycardia, clinically relevant doses of ACE inhibitors, beta-blockade and the funny channel blocker ivabradine did not alter the VNS chronotropic response. While there are qualitative differences in VNS heart control between awake and anaesthetized states, the physiological expression of the neural fulcrum is maintained. ABSTRACT: Vagus nerve stimulation (VNS) is an emerging therapy for treatment of chronic heart failure and remains a standard of therapy in patients with treatment-resistant epilepsy. The objective of this work was to characterize heart rate (HR) responses (HRRs) during the active phase of chronic VNS over a wide range of stimulation parameters in order to define optimal protocols for bidirectional bioelectronic control of the heart. In normal canines, bipolar electrodes were chronically implanted on the cervical vagosympathetic trunk bilaterally with anode cephalad to cathode (n = 8, 'cardiac' configuration) or with electrode positions reversed (n = 8, 'epilepsy' configuration). In awake state, HRRs were determined for each combination of pulse frequency (2-20 Hz), intensity (0-3.5 mA) and pulse widths (130-750 µs) over 14 months. At low intensities and higher frequency VNS, HR increased during the VNS active phase owing to afferent modulation of parasympathetic central drive. When functional effects of afferent and efferent fibre activation were balanced, a null HRR was evoked (defined as 'neural fulcrum') during which HRR ≈ 0. As intensity increased further, HR was reduced during the active phase of VNS. While qualitatively similar, VNS delivered in the epilepsy configuration resulted in more pronounced HR acceleration and reduced HR deceleration during VNS. At termination, under anaesthesia, transection of the vagi rostral to the stimulation site eliminated the augmenting response to VNS and enhanced the parasympathetic efferent-mediated suppressing effect on electrical and mechanical function of the heart. In conclusion, VNS activates central then peripheral aspects of the cardiac nervous system. VNS control over cardiac function is maintained during chronic therapy.


Assuntos
Frequência Cardíaca , Coração/fisiologia , Estimulação do Nervo Vago , Nervo Vago/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Benzazepinas/farmacologia , Cães , Feminino , Coração/inervação , Ivabradina , Masculino , Antagonistas Muscarínicos/farmacologia , Nervo Vago/efeitos dos fármacos
12.
Am J Physiol Heart Circ Physiol ; 312(3): H608-H621, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087519

RESUMO

The influence of cardiac sympathetic innervation on electrical activation in normal and chronically infarcted ventricular myocardium is not understood. Yorkshire pigs with normal hearts (NL, n = 12) or anterior myocardial infarction (MI, n = 9) underwent high-resolution mapping of the anteroapical left ventricle at baseline and during left and right stellate ganglion stimulation (LSGS and RSGS, respectively). Conduction velocity (CV), activation times (ATs), and directionality of propagation were measured. Myocardial fiber orientation was determined using diffusion tensor imaging and histology. Longitudinal CV (CVL) was increased by RSGS (0.98 ± 0.11 vs. 1.2 ± 0.14m/s, P < 0.001) but not transverse CV (CVT). This increase was abrogated by ß-adrenergic receptor and gap junction (GJ) blockade. Neither CVL nor CVT was increased by LSGS. In the peri-infarct region, both RSGS and LSGS shortened ARIs in sinus rhythm (423 ± 37 vs. 322 ± 30 ms, P < 0.001, and 423 ± 36 vs. 398 ± 36 ms, P = 0.035, respectively) and altered activation patterns in all animals. CV, as estimated by mean ATs, increased in a directionally dependent manner by RSGS (14.6 ± 1.2 vs. 17.3 ± 1.6 ms, P = 0.015), associated with GJ lateralization. RSGS and LSGS inhomogeneously modulated AT and induced relative or absolute functional activation delay in parts of the mapped regions in 75 and 67%, respectively, in MI animals, and in 0 and 15%, respectively, in control animals (P < 0.001 for both). In conclusion, sympathoexcitation increases CV in normal myocardium and modulates activation propagation in peri-infarcted ventricular myocardium. These data demonstrate functional control of arrhythmogenic peri-infarct substrates by sympathetic nerves and in part explain the temporal nature of arrhythmogenesis.NEW & NOTEWORTHY This study demonstrates regional control of conduction velocity in normal hearts by sympathetic nerves. In infarcted hearts, however, not only is modulation of propagation heterogeneous, some regions showed paradoxical conduction slowing. Sympathoexcitation altered propagation in all infarcted hearts studied, and we describe the temporal arrhythmogenic potential of these findings.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/sympathetic-nerves-and-cardiac-propagation/.


Assuntos
Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Fenômenos Eletrofisiológicos/fisiologia , Coração/fisiologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Imagem de Tensor de Difusão , Estimulação Elétrica , Feminino , Coração/diagnóstico por imagem , Sistema de Condução Cardíaco/fisiologia , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/inervação , Ventrículos do Coração/fisiopatologia , Imuno-Histoquímica , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/fisiologia , Gânglio Estrelado/fisiopatologia , Suínos , Sistema Nervoso Simpático/diagnóstico por imagem
13.
Circ Res ; 116(12): 2005-19, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26044253

RESUMO

Afferent and efferent cardiac neurotransmission via the cardiac nerves intricately modulates nearly all physiological functions of the heart (chronotropy, dromotropy, lusitropy, and inotropy). Afferent information from the heart is transmitted to higher levels of the nervous system for processing (intrinsic cardiac nervous system, extracardiac-intrathoracic ganglia, spinal cord, brain stem, and higher centers), which ultimately results in efferent cardiomotor neural impulses (via the sympathetic and parasympathetic nerves). This system forms interacting feedback loops that provide physiological stability for maintaining normal rhythm and life-sustaining circulation. This system also ensures that there is fine-tuned regulation of sympathetic-parasympathetic balance in the heart under normal and stressed states in the short (beat to beat), intermediate (minutes to hours), and long term (days to years). This important neurovisceral/autonomic nervous system also plays a major role in the pathophysiology and progression of heart disease, including heart failure and arrhythmias leading to sudden cardiac death. Transdifferentiation of neurons in heart failure, functional denervation, cardiac and extracardiac neural remodeling has also been identified and characterized during the progression of disease. Recent advances in understanding the cellular and molecular processes governing innervation and the functional control of the myocardium in health and disease provide a rational mechanistic basis for the development of neuraxial therapies for preventing sudden cardiac death and other arrhythmias. Advances in cellular, molecular, and bioengineering realms have underscored the emergence of this area as an important avenue of scientific inquiry and therapeutic intervention.


Assuntos
Morte Súbita Cardíaca , Cardiopatias/fisiopatologia , Coração/inervação , Vias Aferentes/fisiopatologia , Animais , Arritmias Cardíacas/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia , Doenças do Sistema Nervoso Autônomo/complicações , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Transdiferenciação Celular , Morte Súbita Cardíaca/etiologia , Denervação , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Retroalimentação Fisiológica , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias/complicações , Hemodinâmica , Humanos , Hipertensão Renal/fisiopatologia , Hipertensão Renal/cirurgia , Rim/inervação , Camundongos , Contração Miocárdica/fisiologia , Fator de Crescimento Neural/fisiologia , Regeneração Nervosa , Semaforina-3A/fisiologia , Pesquisa Translacional Biomédica
14.
J Physiol ; 594(2): 321-41, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26572244

RESUMO

KEY POINTS: Intrinsic cardiac (IC) neurons undergo differential morphological and phenotypic remodelling that reflects the site of myocardial infarction (MI). Afferent neural signals from the infarcted region to IC neurons are attenuated, while those from border and remote regions are preserved post-MI, giving rise to a 'neural sensory border zone'. Convergent IC local circuit (processing) neurons have enhanced transduction capacity following MI. Functional network connectivity within the intrinsic cardiac nervous system is reduced post-MI. MI reduces the response and alters the characteristics of IC neurons to ventricular pacing. ABSTRACT: Autonomic dysregulation following myocardial infarction (MI) is an important pathogenic event. The intrinsic cardiac nervous system (ICNS) is a neural network located on the heart that is critically involved in autonomic regulation. The aims of this study were to characterize structural and functional remodelling of the ICNS post-MI in a porcine model (control (n = 16) vs. healed anteroapical MI (n = 16)). In vivo microelectrode recordings of basal activity, as well as responses to afferent and efferent stimuli, were recorded from intrinsic cardiac neurons. From control 118 neurons and from MI animals 102 neurons were functionally classified as afferent, efferent, or convergent (receiving both afferent and efferent inputs). In control and MI, convergent neurons represented the largest subpopulation (47% and 48%, respectively) and had enhanced transduction capacity following MI. Efferent inputs to neurons were maintained post-MI. Afferent inputs were attenuated from the infarcted region (19% in control vs. 7% in MI; P = 0.03), creating a 'neural sensory border zone', or heterogeneity in afferent information. MI reduced transduction of changes in preload (54% in control vs. 41% in MI; P = 0.05). The overall functional network connectivity, or the ability of neurons to respond to independent pairs of stimuli, within the ICNS was reduced following MI. The neuronal response was differentially decreased to ventricular vs. atrial pacing post-MI (63% in control vs. 44% in MI to ventricular pacing; P < 0.01). MI induced morphological and phenotypic changes within the ICNS. The alteration of afferent neural signals, and remodelling of convergent neurons, represents a 'neural signature' of ischaemic heart disease.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Plasticidade Neuronal , Neurônios/fisiologia , Potenciais de Ação , Animais , Sistema Nervoso Autônomo/patologia , Feminino , Coração/inervação , Frequência Cardíaca , Masculino , Suínos
15.
Am J Physiol Heart Circ Physiol ; 311(5): H1311-H1320, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591222

RESUMO

Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 µs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory.


Assuntos
Fibrilação Atrial/fisiopatologia , Átrios do Coração/inervação , Miocárdio/citologia , Neurônios/fisiologia , Estimulação do Nervo Vago , Animais , Cães , Mediastino/inervação , Rede Nervosa , Nervo Vago
16.
Am J Physiol Heart Circ Physiol ; 310(10): H1349-59, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26993230

RESUMO

Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15-20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling.


Assuntos
Coração/inervação , Hipertrofia Ventricular Esquerda/terapia , Estimulação do Nervo Vago , Nervo Vago/fisiopatologia , Função Ventricular Esquerda , Pressão Ventricular , Remodelação Ventricular , Animais , Apoptose , Modelos Animais de Doenças , Glicogênio Sintase/metabolismo , Cobaias , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Transmissão Sináptica , Fatores de Tempo
17.
Am J Physiol Regul Integr Comp Physiol ; 310(5): R414-21, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26661096

RESUMO

Sympathoexcitation is associated with ventricular arrhythmogenesis. The aim of this study was to determine the role of thoracic dorsal root afferent neural inputs to the spinal cord in modulating ventricular sympathetic control of normal heart electrophysiology. We hypothesize that dorsal root afferent input tonically modulates basal and evoked efferent sympathetic control of the heart. A 56-electrode sock placed on the epicardial ventricle in anesthetized Yorkshire pigs (n = 17) recorded electrophysiological function, as well as activation recovery interval (ARI) and dispersion in ARI, at baseline conditions and during stellate ganglion electrical stimulation. Measures were compared between intact states and sequential unilateral T1-T4 dorsal root transection (DRTx), ipsilateral ventral root transection (VRTx), and contralateral dorsal and ventral root transections (DVRTx). Left or right DRTx decreased global basal ARI [Lt.DRTx: 369 ± 12 to 319 ± 13 ms (P < 0.01) and Rt.DRTx: 388 ± 19 to 356 ± 15 ms (P < 0.01)]. Subsequent unilateral VRTx followed by contralateral DRx+VRTx induced no further change. In intact states, left and right stellate ganglion stimulation shortened ARIs (6 ± 2% vs. 17 ± 3%), while increasing dispersion (+139% vs. +88%). There was no difference in magnitude of ARI or dispersion change with stellate stimulation following spinal root transections. Interruption of thoracic spinal afferent signaling results in enhanced basal cardiac sympathoexcitability without diminishing the sympathetic response to stellate ganglion stimulation. This suggests spinal dorsal root transection releases spinal cord-mediated tonic inhibitory control of efferent sympathetic tone, while maintaining intrathoracic cardiocentric neural networks.


Assuntos
Frequência Cardíaca , Ventrículos do Coração/inervação , Medula Espinal/fisiologia , Raízes Nervosas Espinhais/fisiologia , Sistema Nervoso Simpático/fisiologia , Função Ventricular Esquerda , Potenciais de Ação , Animais , Arritmias Cardíacas/fisiopatologia , Estimulação Elétrica , Feminino , Laminectomia , Masculino , Modelos Animais , Inibição Neural , Neurônios Aferentes/fisiologia , Neurônios Eferentes/fisiologia , Medula Espinal/cirurgia , Raízes Nervosas Espinhais/cirurgia , Gânglio Estrelado/fisiologia , Suínos , Pressão Ventricular
18.
J Card Fail ; 22(8): 639-42, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26576716

RESUMO

OBJECTIVE: Evaluate the effects of a novel autonomic regulation therapy (ART) via vagus nerve stimulation (VNS) in patients with chronic heart failure (HF) and reduced left ventricular ejection fraction during a 12-month follow-up period. METHODS: The Autonomic Regulation Therapy for the Improvement of Left Ventricular Function and Heart Failure Symptoms (ANTHEM-HF) study enrolled 60 subjects with New York Heart Association class II-III HF and low left ventricular ejection fraction (≤40%), who received open-loop ART using VNS randomized to left or right cervical vagus nerve placement and followed for 6 months after titration to a therapeutic output current (2.0 ± 0.6 mA). Patients received chronic stimulation at a frequency of 10 Hz and pulse duration of 250 µsec. Forty-nine subjects consented to participate in an extended follow-up study for an additional 6 months (12 months total posttitration) to determine whether the effects of therapy were maintained. RESULTS: During the 6-month extended follow-up period, there were no device malfunctions or device-related serious adverse effects. There were 7 serious adverse effects unrelated to the device, including 3 deaths (2 sudden cardiac deaths, 1 worsening HF death). There were 5 nonserious adverse events that were adjudicated to be device-related. Safety and tolerability were similar, and there were no significant differences in efficacy between left- and right-sided ART. Overall, mean efficacy measure values at 12 months were not significantly different from mean values at 6 months. CONCLUSIONS: Chronic open-loop ART via left- or right-sided VNS continued to be feasible and well-tolerated in patients with HF with reduced EF. Improvements in cardiac function and HF symptoms seen after 6 months of ART were maintained at 12 months.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Insuficiência Cardíaca/terapia , Volume Sistólico/fisiologia , Estimulação do Nervo Vago/métodos , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular , Feminino , Seguimentos , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento
19.
Am J Physiol Heart Circ Physiol ; 309(10): H1740-52, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371171

RESUMO

Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-µs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following ß-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy.


Assuntos
Vias Aferentes/fisiologia , Vias Eferentes/fisiologia , Frequência Cardíaca/fisiologia , Coração/inervação , Sistema Nervoso Parassimpático/fisiologia , Sistema Nervoso Simpático/fisiologia , Estimulação do Nervo Vago , Nervo Vago/fisiologia , Animais , Bradicardia/fisiopatologia , Cães , Feminino , Masculino , Taquicardia/fisiopatologia
20.
Am J Physiol Heart Circ Physiol ; 309(7): H1198-206, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276818

RESUMO

This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Coração/inervação , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Plasticidade Neuronal/fisiologia , Estimulação do Nervo Vago , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Potenciais Evocados , Glicogenólise , Cobaias , Potenciais da Membrana , Norepinefrina/metabolismo , Volume Sistólico/fisiologia , Transmissão Sináptica , Função Ventricular Esquerda , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA