Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(15): 10527-10541, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567906

RESUMO

Laser fragmentation in liquids has emerged as a promising green chemistry technique for changing the size, shape, structure, and phase composition of colloidal nanoparticles, thus tuning their properties to the needs of practical applications. The advancement of this technique requires a solid understanding of the mechanisms of laser-nanoparticle interactions that lead to the fragmentation. While theoretical studies have made impressive practical and mechanistic predictions, their experimental validation is required. Hence, using the picosecond laser fragmentation of Au nanoparticles in water as a model system, the transient melting and fragmentation processes are investigated with a combination of time-resolved X-ray probing and atomistic simulations. The direct comparison of the diffraction profiles predicted in the simulations and measured in experiments has revealed a sequence of several nonequilibrium processes triggered by the laser irradiation. At low laser fluences, in the regime of nanoparticle melting and resolidification, the results provide evidence of a transient superheating of crystalline nanoparticles above the melting temperature. At fluences about three times the melting threshold, the fragmentation starts with evaporation of Au atoms and their condensation into small satellite nanoparticles. As fluence increases above five times the melting threshold, a transition to a rapid (explosive) phase decomposition of superheated nanoparticles into small liquid droplets and vapor phase atoms is observed. The transition to the phase explosion fragmentation regime is signified by prominent changes in the small-angle X-ray scattering profiles measured in experiments and calculated in simulations. The good match between the experimental and computational diffraction profiles gives credence to the physical picture of the cascade of thermal fragmentation regimes revealed in the simulations and demonstrates the high promise of the joint tightly integrated computational and experimental efforts.

2.
Sci Adv ; 8(38): eabo2621, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129986

RESUMO

Melting is a common and well-studied phenomenon that still reveals new facets when triggered by laser excitation and probed with ultrafast electron diffraction. Recent experimental evidence of anomalously slow nanosecond-scale melting of thin gold films irradiated by femtosecond laser pulses motivates computational efforts aimed at revealing the underlying mechanisms of melting. Atomistic simulations reveal that a combined effect of lattice superheating and relaxation of laser-induced stresses ensures the dominance of the homogeneous melting mechanism at all energies down to the melting threshold and keeps the time scale of melting within ~100 picoseconds. The much longer melting times and the prominent contribution of heterogeneous melting inferred from the experiments cannot be reconciled with the atomistic simulations by any reasonable variation of the electron-phonon coupling strength, thus suggesting the need for further coordinated experimental and theoretical efforts aimed at addressing the mechanisms and kinetics of laser-induced melting in the vicinity of melting threshold.

3.
ACS Appl Mater Interfaces ; 11(45): 42288-42297, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31657889

RESUMO

As the demand for electric vehicles (EVs) and autonomous vehicles (AVs) rapidly grows, lower-cost, lighter, and stronger carbon fibers (CFs) are urgently needed to respond to consumers' call for greater EV traveling range and stronger safety structures for AVs. Converting polymeric precursors to CFs requires a complex set of thermochemical processes; a systematic understanding of each parameter in fiber conversion is still, to a large extent, lacking. Here, we demonstrate the effect of carbonization temperature on carbon ring structure formation by combining atomistic/microscale simulations and experimental validation. Experimental testing, as predicted by simulations, exhibited that the strength and ductility of PAN CFs decreased, whereas the Young's modulus increased with increasing carbonization temperature. Our simulations unveiled that high carbonization temperature accelerated the kinetics of graphitic phase nucleation and growth, leading to the decrease in strength and ductility but increase in modulus. The methodology presented herein using combined atomistic/microscale simulations and experimental validation lays a firm foundation for further innovation in CF manufacturing and low-cost alternative precursor development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA