Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Nano ; 18(9): 7223-7240, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394644

RESUMO

The magnon propagation length, ⟨ξ⟩, of a ferro-/ferrimagnet (FM) is one of the key factors that controls the generation and propagation of thermally driven magnonic spin current in FM/heavy metal (HM) bilayer based spincaloritronic devices. For the development of a complete physical picture of thermally driven magnon transport in FM/HM bilayers over a wide temperature range, it is of utmost importance to understand the respective roles of temperature-dependent Gilbert damping (α) and effective magnetic anisotropy (Keff) in controlling the temperature evolution of ⟨ξ⟩. Here, we report a comprehensive investigation of the temperature-dependent longitudinal spin Seebeck effect (LSSE), radio frequency transverse susceptibility, and broad-band ferromagnetic resonance measurements on Tm3Fe5O12 (TmIG)/Pt bilayers grown on different substrates. We observe a significant drop in the LSSE voltage below 200 K independent of TmIG film thickness and substrate choice. This is attributed to the noticeable increases in effective magnetic anisotropy field, HKeff (∝Keff) and α that occur within the same temperature range. From the TmIG thickness dependence of the LSSE voltage, we determined the temperature dependence of ⟨ξ⟩ and highlighted its correlation with the temperature-dependent HKeff and α in TmIG/Pt bilayers, which will be beneficial for the development of rare-earth iron garnet based efficient spincaloritronic nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA