Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arthritis Rheum ; 65(7): 1736-46, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23633118

RESUMO

OBJECTIVE: To examine the possibility that CXCL16 recruits endothelial cells (ECs) to developing neovasculature in rheumatoid arthritis (RA) synovium. METHODS: We utilized the RA synovial tissue SCID mouse chimera system to examine human microvascular EC (HMVEC) and human endothelial progenitor cell (EPC) recruitment into engrafted human synovium that was injected intragraft with CXCL16-immunodepleted RA synovial fluid (SF). CXCR6-deficient and wild-type (WT) C57BL/6 mice were primed to develop K/BxN serum-induced arthritis and evaluated for angiogenesis. HMVECs and EPCs from human cord blood were also examined for CXCR6 expression, by immunofluorescence and assessment of CXCL16 signaling activity. RESULTS: CXCR6 was prominently expressed on human EPCs and HMVECs, and its expression on HMVECs could be up-regulated by interleukin-1ß. SCID mice injected with CXCL16-depleted RA SF exhibited a significant reduction in EPC recruitment. In experiments using the K/BxN serum-induced inflammatory arthritis model, CXCR6(-/-) mice showed profound reductions in hemoglobin levels, which correlated with reductions in monocyte and T cell recruitment to arthritic joint tissue compared to that observed in WT mice. Additionally, HMVECs and EPCs responded to CXCL16 stimulation, but exhibited unique signal transduction pathways and homing properties. CONCLUSION: These results indicate that CXCL16 and its receptor CXCR6 may be a central ligand/receptor pair that is closely associated with EPC recruitment and blood vessel formation in the RA joint.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Quimiocina CXCL6/fisiologia , Quimiocinas CXC/fisiologia , Células Endoteliais/fisiologia , Neovascularização Patológica/metabolismo , Receptores CXCR/fisiologia , Receptores de Quimiocinas/fisiologia , Receptores Depuradores/fisiologia , Receptores Virais/fisiologia , Animais , Artrite Experimental/fisiopatologia , Artrite Reumatoide/fisiopatologia , Quimiocina CXCL16 , Quimiotaxia/fisiologia , Células Endoteliais/metabolismo , Humanos , Interleucina-1beta/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Neovascularização Patológica/fisiopatologia , Receptores CXCR/efeitos dos fármacos , Receptores CXCR/genética , Receptores CXCR6 , Receptores de Quimiocinas/metabolismo , Receptores Virais/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Membrana Sinovial/metabolismo
2.
Arthritis Rheum ; 62(8): 2536-44, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20506383

RESUMO

OBJECTIVE: To better define the activity of soluble CXCL16 in the recruitment of polymorphonuclear neutrophils (PMNs) in vivo, utilizing a novel animal model of gout involving engraftment of SCID mice with normal human synovial tissue (ST) injected intragraft with gouty human synovial fluid (SF). METHODS: For in vitro studies, a modified Boyden chemotaxis system was used to identify CXCL16 as an active recruitment factor for PMNs in gouty SF. Migration of PMNs could be reduced by neutralization of CXCL16 activity in gouty SF. For in vivo analyses, fluorescent dye-tagged PMNs were injected intravenously into SCID mice while, simultaneously, diluted gouty SF containing CXCL16, or depleted of CXCL16 by antibody blocking, was administered intragraft. In addition, the receptor for CXCL16, CXCR6, was inhibited by incubating PMNs with a neutralizing anti-CXCR6 antibody prior to injection into the mouse chimeras. Recruitment of PMNs to the gouty SF-injected normal human ST was then examined in this SCID mouse chimera system. RESULTS: CXCL16 concentrations were highly elevated in gouty SF, and PMNs were observed to migrate in response to CXCL16 in vitro. Normal human ST-SCID mouse chimeras injected intragraft with gouty SF that had been depleted of CXCL16 during PMN transfer showed a significant reduction of 50% in PMN recruitment to engrafted tissue as compared with that after administration of sham-depleted gouty SF. Similar findings were achieved when PMNs were incubated with a neutralizing anti-CXCR6 antibody before injection into chimeras. CONCLUSION: Overall, the results of this study outline the effectiveness of the human-SCID mouse chimera system as a viable animal model of gout, serving to identify the primary function of CXCL16 as a significant mediator of in vivo recruitment of PMNs to gouty SF.


Assuntos
Quimiocina CXCL6/metabolismo , Modelos Animais de Doenças , Gota/metabolismo , Neutrófilos/metabolismo , Animais , Quimiocina CXCL16 , Quimiocina CXCL6/imunologia , Quimiotaxia de Leucócito/imunologia , Ensaio de Imunoadsorção Enzimática , Gota/imunologia , Humanos , Camundongos , Camundongos SCID , Neutrófilos/imunologia , Neutrófilos/transplante , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA