Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 28(23): 3867-3879, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31807779

RESUMO

The neuronal ceroid lipofuscinoses (NCLs), more commonly referred to as Batten disease, are a group of inherited lysosomal storage disorders that present with neurodegeneration, loss of vision and premature death. There are at least 13 genetically distinct forms of NCL. Enzyme replacement therapies and pre-clinical studies on gene supplementation have shown promising results for NCLs caused by lysosomal enzyme deficiencies. The development of gene therapies targeting the brain for NCLs caused by defects in transmembrane proteins has been more challenging and only limited therapeutic effects in animal models have been achieved so far. Here, we describe the development of an adeno-associated virus (AAV)-mediated gene therapy to treat the neurodegeneration in a mouse model of CLN6 disease, a form of NCL with a deficiency in the membrane-bound protein CLN6. We show that neonatal bilateral intracerebroventricular injections with AAV9 carrying CLN6 increase lifespan by more than 90%, maintain motor skills and motor coordination and reduce neuropathological hallmarks of Cln6-deficient mice up to 23 months post vector administration. These data demonstrate that brain-directed gene therapy is a valid strategy to treat the neurodegeneration of CLN6 disease and may be applied to other forms of NCL caused by transmembrane protein deficiencies in the future.


Assuntos
Vetores Genéticos/administração & dosagem , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/terapia , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Humanos , Injeções Intraventriculares , Proteínas de Membrana/metabolismo , Camundongos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Resultado do Tratamento
2.
Hum Mutat ; 40(11): 1924-1938, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31283065

RESUMO

Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is an autosomal recessive condition caused by variants in the TPP1 gene, leading to deficient activity of the lysosomal enzyme tripeptidyl peptidase I (TPP1). We update on the spectrum of TPP1 variants associated with CLN2 disease, comprising 131 unique variants from 389 individuals (717 alleles) collected from the literature review, public databases, and laboratory communications. Previously unrecorded individuals were added to the UCL TPP1-specific database. Two known pathogenic variants, c.509-1 G>C and c.622 C>T (p.(Arg208*)), collectively occur in 60% of affected individuals in the sample, and account for 50% of disease-associated alleles. At least 86 variants (66%) are private to single families. Homozygosity occurs in 45% of individuals where both alleles are known (87% of reported individuals). Atypical CLN2 disease, TPP1 enzyme deficiency with disease onset and/or progression distinct from classic late-infantile CLN2, represents 13% of individuals recorded with associated phenotype. NCBI ClinVar currently holds records for 37% of variants collected here. Effective CLN2 disease management requires early diagnosis; however, irreversible neurodegeneration occurs before a diagnosis is typically reached at age 5. Timely classification and public reporting of TPP1 variants is essential as molecular testing increases in use as a first-line diagnostic test for pediatric-onset neurological disease.


Assuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Predisposição Genética para Doença , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Serina Proteases/genética , Alelos , Aminopeptidases/química , Animais , Biomarcadores , Bases de Dados Genéticas , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Modelos Animais de Doenças , Estudos de Associação Genética , Genótipo , Humanos , Simulação de Dinâmica Molecular , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/metabolismo , Fenótipo , Conformação Proteica , Serina Proteases/química , Relação Estrutura-Atividade , Tripeptidil-Peptidase 1
3.
PLoS Genet ; 12(3): e1005935, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27010826

RESUMO

Endoglin is an auxiliary receptor for members of the TGF-ß superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-ß receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Eng(fl/fl)LysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Eng(fl/fl)LysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-ß1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.


Assuntos
Receptores de Ativinas Tipo I/genética , Imunidade Inata/genética , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Telangiectasia Hemorrágica Hereditária/genética , Fator de Crescimento Transformador beta/genética , Receptores de Ativinas Tipo I/biossíntese , Receptores de Activinas Tipo II , Animais , Endoglina , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Infecções Oportunistas/genética , Infecções Oportunistas/patologia , Fagocitose/genética , Telangiectasia Hemorrágica Hereditária/patologia
4.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242676

RESUMO

Upon inflammation, monocyte-derived macrophages (MΦ) infiltrate blood vessels to regulate several processes involved in vascular pathophysiology. However, little is known about the mediators involved. Macrophage polarization is crucial for a fast and efficient initial response (GM-MΦ) and a good resolution (M-MΦ) of the inflammatory process. The functional activity of polarized MΦ is exerted mainly through their secretome, which can target other cell types, including endothelial cells. Endoglin (CD105) is a cell surface receptor expressed by endothelial cells and MΦ that is markedly upregulated in inflammation and critically involved in angiogenesis. In addition, a soluble form of endoglin with anti-angiogenic activity has been described in inflammation-associated pathologies. The aim of this work was to identify components of the MΦ secretome involved in the shedding of soluble endoglin. We find that the GM-MΦ secretome contains metalloprotease 12 (MMP-12), a GM-MΦ specific marker that may account for the anti-angiogenic activity of the GM-MΦ secretome. Cell surface endoglin is present in both GM-MΦ and M-MΦ, but soluble endoglin is only detected in GM-MΦ culture supernatants. Moreover, MMP-12 is responsible for the shedding of soluble endoglin in vitro and in vivo by targeting membrane-bound endoglin in both MΦ and endothelial cells. These data demonstrate a direct correlation between GM-MΦ polarization, MMP-12, and soluble endoglin expression and function. By targeting endothelial cells, MMP-12 may represent a novel mediator involved in vascular homeostasis.


Assuntos
Endoglina/metabolismo , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endoglina/genética , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Modelos Biológicos
5.
J Cell Sci ; 127(Pt 12): 2723-35, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24777481

RESUMO

Endoglin plays a crucial role in pathophysiological processes such as hereditary hemorrhagic telangiectasia (HHT), preeclampsia and cancer. Endoglin expression is upregulated during the monocyte-to-macrophage transition, but little is known about its regulation and function in these immune cells. Two different alternatively spliced isoforms of endoglin have been reported, L-endoglin and S-endoglin. Although L-endoglin is the predominant variant, here, we found that there was an increased expression of the S-endoglin isoform during senescence of the myeloid lineage in human and murine models. We performed a stable isotope labelling of amino acids in cell culture (SILAC) analysis of both L-endoglin and S-endoglin transfectants in the human promonocytic cell line U937. Analysis of differentially expressed protein clusters allowed the identification of cellular activities affected during aging. S-endoglin expression led to decreased cellular proliferation and a decreased survival response to granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced apoptosis, as well as increased oxidative stress. Gene expression and functional studies suggested that there was a non-redundant role for each endoglin isoform in monocyte biology. In addition, we found that S-endoglin impairs the monocytic differentiation into the pro-inflammatory M1 phenotype and contributes to the compromised status of macrophage functions during aging.


Assuntos
Antígenos CD/metabolismo , Macrófagos/fisiologia , Receptores de Superfície Celular/metabolismo , Processamento Alternativo , Antígenos CD/genética , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Polaridade Celular , Senescência Celular , Endoglina , Expressão Gênica , Humanos , Monócitos/fisiologia , Estresse Oxidativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/genética
6.
J Cell Physiol ; 230(4): 947-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25216259

RESUMO

Endoglin is an auxiliary cell surface receptor for TGF-ß family members. Two different alternatively spliced isoforms, long (L)-endoglin and short (S)-endoglin, have been reported. S-endoglin and L-endoglin proteins vary from each other in their cytoplasmic tails that contain 14 and 47 amino acids, respectively. A critical role for endoglin in vascular development has primarily been studied in endothelial cells. In addition, endoglin expression is upregulated during monocyte-to-macrophage differentiation; however, little is known about its role in this myeloid context. To investigate the function of endoglin in monocytes, stable transfectants expressing the two endoglin isoforms in the promonocytic human cell line U937 were generated. The differential gene expression fingerprinting of these endoglin transfectants using DNA microarrays and further bioinformatics analysis showed a clear alteration in essential biological functions, mainly those related to "Cellular Movement", including cell adhesion and transmigration. Interestingly, these cellular functions are highly dependent on adhesion molecules, including integrins α1 (CD49a, ITGA1 gene), αL (CD11a, ITGAL gene), αM (CD11b, ITGAM gene) and ß2 (CD18, ITGB2 gene) and the chemokine receptor CCR2 (CD192, CCR2 gene), which are downregulated in endoglin transfectants. Moreover, activin A (INHBA gene), a TGF-ß superfamily member involved in macrophage polarization, was distinctly affected in each endoglin transfectant, and may contribute to the regulated expression of integrins. These data were confirmed by quantitative PCR, flow cytometry and functional tests. Taken together, these results provide new insight into endoglin function in monocytes.


Assuntos
Antígenos CD/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Monócitos/metabolismo , Receptores de Superfície Celular/genética , Transcrição Gênica , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Endoglina , Células Endoteliais/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Integrinas/metabolismo , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Células U937
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(9): 165772, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32220628

RESUMO

The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of rare monogenic neurodegenerative diseases predominantly affecting children. All NCLs are lethal and incurable and only one has an approved treatment available. To date, 13 NCL subtypes (CLN1-8, CLN10-14) have been identified, based on the particular disease-causing defective gene. The exact functions of NCL proteins and the pathological mechanisms underlying the diseases are still unclear. However, gene therapy has emerged as an attractive therapeutic strategy for this group of conditions. Here we provide a short review discussing updates on the current gene therapy studies for the NCLs.


Assuntos
Terapia Genética , Lipofuscinoses Ceroides Neuronais/terapia , Animais , Humanos , Lipofuscinoses Ceroides Neuronais/genética
8.
Hum Gene Ther ; 31(13-14): 709-718, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32578444

RESUMO

The neuronal ceroid lipofuscinoses (NCLs), often referred to as Batten disease, are inherited lysosomal storage disorders that represent the most common neurodegeneration during childhood. Symptoms include seizures, vision loss, motor and cognitive decline, and premature death. The development of brain-directed treatments for NCLs has made noteworthy progress in recent years. Clinical trials are currently ongoing or planned for different forms of the disease. Despite these promising advances, it is unlikely that therapeutic interventions targeting the brain will prevent loss of vision in patients as retinal cells remain untreated and will continue to degenerate. Here, we demonstrate that Cln3Δex7/8 mice, a mouse model of CLN3 Batten disease with juvenile onset, suffer from a decline in inner retinal function resulting from the death of rod bipolar cells, interneurons vital for signal transmission from photoreceptors to ganglion cells in the retina. We also show that this ocular phenotype can be treated by adeno-associated virus (AAV)-mediated expression of CLN3 in cells of the inner retina, leading to significant survival of bipolar cells and preserved retinal function. In contrast, the treatment of photoreceptors, which are lost in patients at late disease stages, was not therapeutic in Cln3Δex7/8 mice, underlining the notion that CLN3 disease is primarily a disease of the inner retina with secondary changes in the outer retina. These data indicate that bipolar cells play a central role in this disease and identify this cell type as an important target for ocular AAV-based gene therapies for CLN3 disease.


Assuntos
Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinoses Ceroides Neuronais/complicações , Células Fotorreceptoras/metabolismo , Doenças Retinianas/terapia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia
9.
PLoS One ; 7(2): e29948, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347366

RESUMO

Endoglin, a type I membrane glycoprotein expressed as a disulfide-linked homodimer on human vascular endothelial cells, is a component of the transforming growth factor (TGF)-ß receptor complex and is implicated in a dominant vascular dysplasia known as hereditary hemorrhagic telangiectasia as well as in preeclampsia. It interacts with the type I TGF-ß signaling receptor activin receptor-like kinase (ALK)1 and modulates cellular responses to Bone Morphogenetic Protein (BMP)-9 and BMP-10. Structurally, besides carrying a zona pellucida (ZP) domain, endoglin contains at its N-terminal extracellular region a domain of unknown function and without homology to any other known protein, therefore called the orphan domain (OD). In this study, we have determined the recognition and binding ability of full length ALK1, endoglin and constructs encompassing the OD to BMP-9 using combined methods, consisting of surface plasmon resonance and cellular assays. ALK1 and endoglin ectodomains bind, independently of their glycosylation state and without cooperativity, to different sites of BMP-9. The OD comprising residues 22 to 337 was identified among the present constructs as the minimal active endoglin domain needed for partner recognition. These studies also pinpointed to Cys350 as being responsible for the dimerization of endoglin. In contrast to the complete endoglin ectodomain, the OD is a monomer and its small angle X-ray scattering characterization revealed a compact conformation in solution into which a de novo model was fitted.


Assuntos
Antígenos CD/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Receptores de Superfície Celular/metabolismo , Antígenos CD/química , Endoglina , Fator 2 de Diferenciação de Crescimento , Humanos , Ligantes , Ligação Proteica , Multimerização Proteica , Receptores de Superfície Celular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA