Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 22(4)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383516

RESUMO

This study investigates the antibacterial mechanism of action of electrospun chitosan-based nanofibers (CNFs), against Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus and Listeria innocua, bacteria frequently involved in food contamination and spoilage. CNFs were prepared by electrospinning of chitosan and poly(ethylene oxide) (PEO) blends. The in vitro antibacterial activity of CNFs was evaluated and the susceptibility/resistance of the selected bacteria toward CNFs was examined. Strain susceptibility was evaluated in terms of bacterial type, cell surface hydrophobicity, and charge density, as well as pathogenicity. The efficiency of CNFs on the preservation and shelf life extension of fresh red meat was also assessed. Our results demonstrate that the antibacterial action of CNFs depends on the protonation of their amino groups, regardless of bacterial type and their mechanism of action was bactericidal rather than bacteriostatic. Results also indicate that bacterial susceptibility was not Gram-dependent but strain-dependent, with non-virulent bacteria showing higher susceptibility at a reduction rate of 99.9%. The susceptibility order was: E. coli > L. innocua > S. aureus > S. Typhimurium. Finally, an extension of one week of the shelf life of fresh meat was successfully achieved. These results are promising and of great utility for the potential use of CNFs as bioactive food packaging materials in the food industry, and more specifically in meat quality preservation.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Quitosana/química , Microbiologia de Alimentos , Carne/microbiologia , Nanofibras/química , Contaminação de Alimentos , Embalagem de Alimentos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanofibras/ultraestrutura
2.
Food Sci Nutr ; 5(4): 865-874, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28748074

RESUMO

This study investigates the antibacterial action of chitosan-based nanofibers (CNFs) obtained by the electrospinning process on the permeability of bacterial membranes. The bactericidal efficiency of CNFs was first determined against Gram-negative Escherichia coli and Salmonella Typhimurium, and Gram-positive Staphylococcus aureus and Listeria innocua bacteria as a baseline. The results strongly suggest that CNFs interact with the negatively charged bacterial cell wall causing membrane rupture and inducing leakage of intracellular components among which are proteins and DNA. Results clearly indicate that the release of such components after contact with CNFs is an indication of membrane permeabilization and perforation, as pore formation was observed in transmission electron microscopy (TEM). This work suggests a plausible antibacterial mechanism of action of CNFs and also provides clear evidence in favor of chitosan as a bacterial membrane disruptor and perforator. As a result, CNFs can find promising applications as bioactive food packaging materials capable to extend shelf life of food products while inhibiting the spread of alteration flora and foodborne pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA