Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Org Chem ; 89(7): 5134-5141, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38489762

RESUMO

CIDD-0072424 is a novel small molecule developed in silico with remarkable activity for the inhibition of protein kinase C (PKC)-epsilon to treat alcohol use disorder. We developed a concise synthesis of (S)-2 that is highly enantioselective, scalable, and amenable for 3-point structure-activity relationship (SAR) studies for compound optimization. The highly enantioselective nitro-Mannich reaction was achieved through a dual-reagent catalysis system. The overall utility and the efficiency of the enantioselective route provided a scalable synthesis of both PKCε inhibitors 1 and 2.


Assuntos
Proteína Quinase C-épsilon , Estereoisomerismo , Catálise
2.
Inorg Chem ; 63(25): 11583-11591, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38857486

RESUMO

Conjugated molecules with donor-acceptor-donor (D-A-D) moieties have garnered significant attention for their ability to form luminescent metal-organic frameworks (LMOFs). D-A-D molecules feature tunable bandgaps, which can be varied systematically to control the fluorescence wavelength of LMOFs. In this study, we prepared and characterized the fluorescence properties of two porous interpenetrated Zr-organic frameworks (PIZOFs) constructed using 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diylbis(ethyne-2,1-diyl))dibenzoic acid (L-Se) or 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diylbis(ethyne-2,1-diyl))dibenzoic acid (L-S) as linkers. The corresponding MOFs are denoted as PIZOF-Se and PIZOF-S, respectively. Through our investigation, we explored the correlation between the structure of the frameworks and their respective optical properties. Our findings revealed that there are distinct differences in the fluorescence properties of the two PIZOFs. Specifically, the fluorescence of PIZOF-S is red-shifted from that characteristic of the corresponding linker, L-S. By contrast, the fluorescence of PIZOF-Se is substantially blue-shifted from that of linker L-Se. The emission of mixed-linker MOFs is explored by combining L-S or L-Se with structurally analogous, but nonfluorescent linker, 4,4'-((perfluoro-1,4-phenylene)bis(ethyne-2,1-diyl))dibenzoic acid (L-F). Based on steady-state and time-resolved photoluminescence experiments, as well as confocal fluorescence microscopy combined with fluorescence lifetime imaging (FILM), we demonstrated that linker engineering is an effective method to tune the emission behavior of LMOFs.

3.
J Am Chem Soc ; 145(24): 13059-13068, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37294869

RESUMO

One of the most important reactions of 1,2,3-triazines with a dienophile is inverse electron demand Diels-Alder (IEDDA) cycloaddition, which occurs through nucleophilic addition to the triazine followed by N2 loss and cyclization to generate a heterocycle. The site of addition is either at the 4- or 6-position of the symmetrically substituted triazine core. Although specific examples of the addition of nucleophiles to triazines are known, a comprehensive understanding has not been reported, and the preferred site for nucleophilic addition is unknown and unexplored. With access to unsymmetrical 1,2,3-triazine-1-oxides and their deoxygenated 1,2,3-triazine compounds, we report C-, N-, H-, O-, and S-nucleophilic additions on 1,2,3-triazine and 1,2,3-triazine-1-oxide frameworks where the 4- and 6-positions could be differentiated. In the IEDDA cycloadditions using C- and N-nucleophiles, the site of addition is at C-6 for both heterocyclic systems, but product formation with 1,2,3-triazine-1-oxides is faster. Other N-nucleophile reactions with triazine 1-oxides show addition at either the 4- or 6-position of the triazine 1-oxide ring, but nucleophilic attack only occurs at the 6-position on the triazine. Hydride from NaBH4 undergoes addition at the 6-position on the triazine and the triazine 1-oxide core. Alkoxides show a high nucleophilic selectivity for the 4-position of the triazine 1-oxide. Thiophenoxide, cysteine, and glutathione undergo nucleophilic addition on the triazine core at the 6-position, while addition occurs at the 4-position of the triazine 1-oxide. These nucleophilic additions proceed under mild reaction conditions and show high functional group tolerance. Computational studies clarified the roles of the nucleophilic addition and nitrogen extrusion steps and the influence of steric and electronic factors in determining the outcomes of the reactions with different nucleophiles.

4.
J Am Chem Soc ; 145(4): 2386-2394, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36691701

RESUMO

Highly efficient adsorptive separation of propylene from propane offers an ideal alternative method to replace the energy-intensive cryogenic distillation technology. Molecular sieving-type separation via high-performance adsorbents is targeted for superior selectivity, but the limit in adsorption capacity remains a great challenge. Here, we report an oxyfluoride-based ultramicroporous metal-organic framework UTSA-400, [Ni(WO2F4)(pyz)2] (pyz = pyrazine), featuring one-dimensional pore channels that can accommodate the propylene molecules with optimal binding affinity while specifically excluding the propane molecules. The exposed oxide/fluoride pairs in UTSA-400 serve as strong functional sites for strengthened propylene-host interactions, accounting for a significantly enhanced propylene uptake, while the propane molecules are excluded due to the regulated host framework dynamics. The strong propylene binding enables near-saturation of propylene in the pore confinement at ambient conditions, leading to full utilization of pore space and superior packing density. Combined in situ infrared spectroscopy measurements and dispersion-corrected density functional theory calculations clearly unveil the nature of boosted host-guest binding. Direct production of polymer-grade (>99.5%) propylene with remarkable dynamic productivity is demonstrated by column breakthrough experiments. This work presents an example of pore engineering with atomic precision to break the trade-off in adsorptive separation through guest binding optimization.

5.
Org Biomol Chem ; 21(15): 3172-3176, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36950968

RESUMO

Menarandroside A, which bears a 12α-hydroxypregnenolone steroid backbone, was isolated from the plant, Cynanchum menarandrense. Treatment of extracts from this plant containing menarandroside A against secretin tumor cell line (STC-1) intestinal cells, resulted in an increased secretion of glucagon-like peptide 1 (GLP-1), a peptide that plays a role in the regulation of blood sugar levels. Increase in GLP-1 is beneficial for the treatment of type 2 diabetes. We disclose the synthesis of menarandroside A from dehydroepiandrosterone (DHEA). Key features of this synthesis include: (i) Wittig reaction of the C17-ketone of a 12-oxygenated DHEA derivative to introduce the C17-acetyl moiety, and (ii) the stereoselective reduction of a C12-keto intermediate bearing an sp2-center at C17 to yield the C12α-hydroxy group. In addition, an oxidation of a methyl enol ether derivative to an α-hydroxy methyl ester using tetrapropylammonium perruthenate (TPAP) and N-methyl-morpholine-N-oxide (NMO) was discovered.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Esteroides , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Oxirredução , Desidroepiandrosterona/metabolismo
6.
J Nat Prod ; 86(7): 1654-1666, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37458412

RESUMO

Artemisia annua is the plant that produces artemisinin, an endoperoxide-containing sesquiterpenoid used for the treatment of malaria. A. annua extracts, which contain other bioactive compounds, have been used to treat other diseases, including cancer and COVID-19, the disease caused by the virus SARS-CoV-2. In this study, a methyl ester derivative of arteannuin B was isolated when A. annua leaves were extracted with a 1:1 mixture of methanol and dichloromethane. This methyl ester was thought to be formed from the reaction between arteannuin B and the extracting solvent, which was supported by the fact that arteannuin B underwent 1,2-addition when it was dissolved in deuteromethanol. In contrast, in the presence of N-acetylcysteine methyl ester, a 1,4-addition (thiol-Michael reaction) occurred. Arteannuin B hindered the activity of the SARS CoV-2 main protease (nonstructural protein 5, NSP5), a cysteine protease, through time-dependent inhibition. The active site cysteine residue of NSP5 (cysteine-145) formed a covalent bond with arteannuin B as determined by mass spectrometry. In order to determine whether cysteine adduction by arteannuin B can inhibit the development of cancer cells, similar experiments were performed with caspase-8, the cysteine protease enzyme overexpressed in glioblastoma. Time-dependent inhibition and cysteine adduction assays suggested arteannuin B inhibits caspase-8 and adducts to the active site cysteine residue (cysteine-360), respectively. Overall, these results enhance our understanding of how A. annua possesses antiviral and cytotoxic activities.


Assuntos
Artemisininas , COVID-19 , Cisteína Proteases , Humanos , Caspase 8/metabolismo , Cisteína Proteases/metabolismo , Compostos de Sulfidrila/farmacologia , Cisteína/farmacologia , SARS-CoV-2 , Extratos Vegetais/química , Artemisininas/química
7.
Chemistry ; 28(11): e202104269, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982835

RESUMO

Separation of xylene isomers is one of the most important but most challenging and energy-intensive separation processes in the petrochemical industry. Here, we report an adaptive hydrogen-bonded organic framework (HOF-29) constructed from a porphyrin based organic building block 4,4',4'',4'''-(porphyrin-5,10,15,20-tetrayl) tetrabenzonitrile (PTTBN), exhibiting the exclusive molecular recognition of p-xylene (pX) over its isomers of o-xylene (oX) and m-xylene (mX), as clearly demonstrated in the single crystal structure transformation and 1 H NMR studies. Single crystal structure studies show that single-crystal-to-single-crystal transformation from the as-synthesized HOF-29 to the pX exclusively included HOF-29⊃pX is triggered by the encapsulation of pX molecules, accompanied by sliding of the 2D layers and local distortion of the ligand, which provides multiple C-H⋅⋅⋅π interactions.

8.
Inorg Chem ; 61(27): 10477-10485, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35766905

RESUMO

Iron-hydride and iron-boryl complexes supported by a pyrrole-based pincer ligand, tBuPNP (PNP = anion of 2,5-bis(di-tert-butylphosphinomethyl)pyrrole), were employed for a detailed mechanistic study on the hydroboration of internal alkynes. Several novel complexes were isolated and fully characterized, including iron-vinyl and iron-boryl species, which represent likely intermediates in the catalytic hydroboration pathway. In addition, the products of alkyne insertion into the Fe-B bond have been isolated and structurally characterized. Mechanistic studies of the hydroboration reaction favor a pathway involving an active iron-hydride species, [FeH(tBuPNP)], which readily inserts alkyne and undergoes subsequent reaction with hydroborane to generate product. The iron-boryl species, [Fe(BR2)(tBuPNP)] (R2 = pin or cat), was found to be chemically competent, although its use in catalysis entailed an induction period whereby the iron-hydride species was generated. Stoichiometric reactions and kinetic experiments were performed to paint a fuller picture of the mechanism of alkyne hydroboration, including pathways for catalyst deactivation and the influence of substrate bulk on catalytic efficacy.


Assuntos
Alcinos , Ferro , Alcinos/química , Catálise , Ferro/química , Ligantes , Pirróis
9.
J Nat Prod ; 85(4): 951-962, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35357832

RESUMO

Dihydroartemisinic acid (DHAA) is a plant natural product that undergoes a spontaneous endoperoxide-forming cascade reaction to yield artemisinin in the presence of air. The endoperoxide functional group gives artemisinin its biological activity that kills Plasmodium falciparum, the parasite that causes malaria. To enhance our understanding of the mechanism of this cascade reaction, 2,3-didehydrodihydroartemisinic acid (2,3-didehydro-DHAA), a DHAA derivative with a double bond at the C2-position, was synthesized. When 2,3-didehydro-DHAA was exposed to air over time, instead of forming an endoperoxide, this compound predominantly underwent aromatization. This olefinated DHAA analogue reveals the requirement of a monoalkene functional group to initiate the endoperoxide-forming cascade reaction to yield artemisinin from DHAA. In addition, this aromatization process was exploited to illustrate the autoxidation process of a different plant natural product, dihydroserrulatene, to form the aromatic ring in serrulatene. This spontaneous aromatization process has applications in other natural products such as leubethanol and erogorgiaene. Due to their similarity in structure to antimicrobial natural products, the synthesized compounds in this study were tested for biological activity. A group of the tested compounds had minimum inhibitory concentration (MIC) values ranging from 12.5 to 25 µg/mL against the bacterial pathogen Staphylococcus aureus and the fungal pathogen Cryptococcus neoformans.


Assuntos
Antimaláricos , Produtos Biológicos , Malária , Antimaláricos/química , Antimaláricos/farmacologia , Artemisininas , Humanos
10.
Angew Chem Int Ed Engl ; 61(43): e202210525, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36006859

RESUMO

The intermediate oxidation state of sulfoxides is central to the plethora of their applications in chemistry and medicine, yet it presents challenges for an efficient synthetic access, limiting the structural diversity of currently available sulfoxides. Here, we report a data-guided development of direct decarboxylative sulfinylation that enables the previously inaccessible functional group interconversion of carboxylic acids to sulfoxides in a reaction with sulfinates. Given the broad availability of carboxylic acids and the growing synthetic potential of sulfinates, the direct decarboxylative sulfinylation is poised to improve the structural diversity of synthetically accessible sulfoxides. The reaction is facilitated by a kinetically favored sulfoxide formation from the intermediate sulfinyl sulfones, despite the strong thermodynamic preference for the sulfone formation, unveiling the previously unknown and chemoselective radicalophilic sulfinyl sulfone reactivity.


Assuntos
Ácidos Carboxílicos , Sulfóxidos , Sulfóxidos/química , Sulfonas/química , Oxirredução , Metais
11.
J Am Chem Soc ; 143(37): 15391-15399, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34510888

RESUMO

An oxocarbenium-olefin cross metathesis occurs during Brønsted acid catalyzed reactions of 1H-isochromene acetals with vinyl diazo compounds. Formally a carbonyl-alkene [2 + 2]-cyclization between isobenzopyrylium ions and the vinyl group of vinyl diazoesters, the retro-[2 + 2] cycloaddition produces a tethered alkene and a vinyl diazonium ion that, upon loss of dinitrogen, undergoes a highly selective carbocationic cascade rearrangements to diverse products whose formation is controlled by reactant substituents. Polysubstituted benzobicyclo[3.3.1]oxocines, benzobicyclo[3.2.2]oxepines, benzobicyclopropane, and naphthalenes are obtained in good to excellent yields and selectivities. Furthermore, isotopic tracer and control experiments shed light on the oxocarbenium-olefin metathesis/rearrangement process as well as on the origin of the interesting substituent-dependent selectivity.

12.
J Am Chem Soc ; 143(2): 657-663, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33395524

RESUMO

The quest for new and unique polynuclear metal-oxocarboxylate clusters has led to a continual boom of highly connected and robust metal-organic frameworks (MOFs) with intriguing properties. In this work, by virtue of a highly specific coordination-driven cluster rearrangement process of a presynthesized trinuclear zirconocene-based tripodal metallo-pyridine ligand, we realized the preparation of the first two 2D heterometallic MOFs incorporating unprecedented Johnson-type (J51) nonanuclear Zr-oxocarboxylate clusters, as unambiguously uncovered by single-crystal X-ray crystallography. The resultant two charged frameworks feature counteranion-dependent 3,6-c kgd (JMOF-1) and 3,12-c 3,12L4 (JMOF-2) nets that are formed by octahedral and hexagonal prismatic Zr9 molecular building blocks (MBBs), respectively. In addition, JMOF-2 shows promise for the purification of acetylene from CO2 and C2H4, with IAST selectivities of about 12 and 8, respectively, at 298 K and 1 bar, as well as remarkable iodine capture capacity of up to 2.4 g g-1.

13.
Inorg Chem ; 60(24): 18816-18821, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34870966

RESUMO

A copper-based metal-organic framework, [Cu2(PBTDA)(H2O)2] (UTSA-98, UTSA = the University of Texas at San Antonio; H4PBTDA = 5',5''''-(1,4-phenylene)bis([1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid)), has been solvothermally synthesized. The alternative connection of classical dicopper secondary building units and deprotonated four-branched PBTDA4- ligands led to the formation of the three-dimensional framework of UTSA-98 with one-dimensional rhombic channels. Its guest-free phase, UTSA-98a, uptakes much more C2H2 (82.6 cm3/g) than CO2 (40.3 cm3/g) at 298 K and 100 kPa, resulting in a high adsorption selectivity of 5.2. Furthermore, the efficient separation ability of UTSA-98a toward the C2H2/CO2 gas mixture was further verified by laboratory-scale fixed-bed breakthrough experiments.

14.
Inorg Chem ; 60(14): 10065-10074, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33908257

RESUMO

This study probes femto- and picosecond excited-state dynamics of a series of N-heterocyclic carbene (NHC) ligand-containing platinum(II) complexes of the type trans-(NHC)2PtII(CC-Ar)2, where CC-Ar is an arylacetylide. By using femtosecond transient absorption spectroscopy, two dynamic processes are observed: an ultrafast singlet → triplet intersystem crossing (<0.3 ps), followed by geometric/electronic relaxation that takes place on a 2-10 ps time scale. The geometric/electronic relaxation is attributed to ligand torsional modes, mainly arising from twisting of the aryl units relative to the square-planar PtL4 unit. The dynamics of this relaxation process depend somewhat on steric constraints induced by substituent groups attached to the (benz)imidazole and phenyl ligands. The geometric relaxation dynamics slow with increasing solvent viscosity. The experimental studies also reveal that the different conformers can be photoselected by varying the excitation at different near-UV wavelengths. To corroborate the experimental findings, density functional theory calculations were conducted to probe the effects of geometry and steric hindrance on the ground-state energy surface. The calculations suggest that the barrier for torsion of the CC-Ar units increases as N-substituents on the NHC ligands increase in the order CH3 < cyclohexyl < n-butyl and as the CC-Ar units are substituted in the 3 and 5 positions with tert-butyl groups.

15.
J Nat Prod ; 84(7): 1967-1984, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34137611

RESUMO

Artemisinin is the plant natural product used to treat malaria. The endoperoxide bridge of artemisinin confers its antiparasitic properties. Dihydroartemisinic acid is the biosynthetic precursor of artemisinin that was previously shown to nonenzymatically undergo endoperoxide formation to yield artemisinin. This report discloses the synthesis of [15,15,15-2H3]-dihydroartemisinic acid and its use to determine the mechanism of endoperoxide formation. Several new observations were made: (i) Ultraviolet-C (UV-C) radiation initially accelerates artemisinin formation and subsequently promotes homolytic cleavage of the O-O bond and rearrangement of artemisinin to a different product, and (ii) dideuterated and trideuterated dihydroartemisinic acid isotopologues at C3 and C15 converted to artemisinin at a slower rate compared to nondeuterated dihydroartemisinic acid, revealing a kinetic isotope effect in the initial ene reaction toward endoperoxide formation (kH/kD ∼ 2-3). (iii) The rate of conversion from dihydroartemisinic acid to artemisinin increased with the amount of dihydroartemisinic acid, suggesting an intermolecular interaction to promote endoperoxide formation, and (iv) 18O2-labeling showed incorporation of three and four oxygen atoms from molecular oxygen into the endoperoxide bridge of artemisinin. These results reveal new insights toward understanding the mechanism of endoperoxide formation in artemisinin biosynthesis.


Assuntos
Antimaláricos/síntese química , Artemisininas/síntese química , Estrutura Molecular
16.
Angew Chem Int Ed Engl ; 60(24): 13394-13400, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33831277

RESUMO

An unprecedented AgI -catalyzed efficient method for the coupling of imino ethers and enol diazoacetates through a [3+2]-cycloaddition/C-O bond cleavage/[1,5]-proton transfer cascade process is reported. The general class of imino ethers that includes oxazolines, benzoxazoles and benzimidates are applicable substrates for these reactions that provide direct access to fully substituted pyrroles with uniformly high chemo- and regioselectivity. High variability in substitution at the pyrrole 2-, 5- and N-positions characterizes this methodology that also presents an entry point for further pyrrole diversification via facile modification of resulting N-functional pyrroles.

17.
J Am Chem Soc ; 142(3): 1603-1613, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31899630

RESUMO

Boronic acids are centrally important functional motifs and synthetic precursors. Visible light-induced borylation may provide access to structurally diverse boronates, but a broadly efficient photocatalytic borylation method that can effect borylation of a wide range of substrates, including strong C-O bonds, remains elusive. Herein, we report a general, metal-free visible light-induced photocatalytic borylation platform that enables borylation of electron-rich derivatives of phenols and anilines, chloroarenes, as well as other haloarenes. The reaction exhibits excellent functional group tolerance, as demonstrated by the borylation of a range of structurally complex substrates. Remarkably, the reaction is catalyzed by phenothiazine, a simple organic photocatalyst with MW < 200 that mediates the previously unachievable visible light-induced single electron reduction of phenol derivatives with reduction potentials as negative as approximately - 3 V versus SCE by a proton-coupled electron transfer mechanism. Mechanistic studies point to the crucial role of the photocatalyst-base interaction.


Assuntos
Ácidos Borônicos/química , Carbono/química , Luz , Nitrogênio/química , Oxigênio/química , Catálise
18.
J Nat Prod ; 83(1): 66-78, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31859509

RESUMO

Dihydroartemisinic acid is the biosynthetic precursor to artemisinin, the endoperoxide-containing natural product used to treat malaria. The conversion of dihydroartemisinic acid to artemisinin is a cascade reaction that involves C-C bond cleavage, hydroperoxide incorporation, and polycyclization to form the endoperoxide. Whether or not this reaction is enzymatically controlled has been controversial. A method was developed to quantify the nonenzymatic conversion of dihydroartemisinic acid to artemisinin using LC-MS. A seven-step synthesis of 3,3-dideuterodihydroartemisinic acid (23) was accomplished beginning with dihydroartemisinic acid (1). The nonenzymatic rates of formation of 3,3-dideuteroartemisinin (24) from 3,3-dideuterodihydroartemisinic acid (23) were 1400 ng/day with light and 32 ng/day without light. Moreover, an unexpected formation of nondeuterated artemisinin (3) from 3,3-dideuterodihydroartemisinic acid (23) was detected in both the presence and absence of light. This formation of nondeuterated artemisinin (3) from its dideuterated precursor (23) suggests an alternative mechanistic pathway that operates independent of light to form artemisinin, involving the loss of the two C-3 deuterium atoms.


Assuntos
Antimaláricos/síntese química , Artemisininas/química , Artemisininas/síntese química , Sesquiterpenos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Cromatografia Líquida , Sesquiterpenos/química
19.
Angew Chem Int Ed Engl ; 59(32): 13613-13617, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32372540

RESUMO

The direct Friedel-Crafts-type coupling and dedinitrogenation reactions of vinyldiazo compounds with aromatic compounds using a metal-free strategy are described. This Brønsted acid catalyzed method is efficient for the formation of α-diazo ß-carbocations (vinyldiazonium ions), vinyl carbocations, and allylic or homoallylic carbocation species via vinyldiazo compounds. By choosing suitable nucleophilic reagents to selectively capture these intermediates, both trisubstituted α,ß-unsaturated esters, ß-indole-substituted diazo esters, and dienes are obtained with good to high yields and selectivity. Experimental insights implicate a reaction mechanism involving the selective protonation of vinyldiazo compounds and the subsequent release of dinitrogen to form vinyl cations that undergo intramolecular 1,3- and 1,4- hydride transfer processes as well as fragmentation.

20.
Angew Chem Int Ed Engl ; 59(20): 7921-7927, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32050048

RESUMO

The development of efficient and selective C-N bond-forming reactions from abundant feedstock chemicals remains a central theme in organic chemistry owing to the key roles of amines in synthesis, drug discovery, and materials science. Herein, we present a dual catalytic system for the N-alkylation of diverse aromatic carbocyclic and heterocyclic amines directly with carboxylic acids, by-passing their preactivation as redox-active esters. The reaction, which is enabled by visible-light-driven, acridine-catalyzed decarboxylation, provides access to N-alkylated secondary and tertiary anilines and N-heterocycles. Additional examples, including double alkylation, the installation of metabolically robust deuterated methyl groups, and tandem ring formation, further demonstrate the potential of the direct decarboxylative alkylation (DDA) reaction.


Assuntos
Aminas/química , Compostos Heterocíclicos/química , Acridinas/química , Alquilação , Compostos de Anilina/química , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA