Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Exp Cell Res ; 316(16): 2618-29, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20599945

RESUMO

In recent years, the function of different tumour suppressors in the regulation of macroautophagy has been studied. We show here that BRCA1, unlike other tumour suppressors, negatively regulates formation of autophagosomes and lysosomal mass under conditions of both basal and enhanced autophagy. In MCF-7 breast cancer cells, increased formation of autophagic vacuoles after inactivation of BRCA1 by siRNAs is associated with an increase in reactive oxygen species, such as superoxide anion and hydrogen peroxide. This allows one to propose an antioxidant function for BRCA1 and suggests that dysfunctional mitochondria and the generated reactive oxygen species excess could explain the increased macroautophagy observed in the absence of BRCA1. In addition, a quick decrease in BRCA1 levels occurs when MCF-7 cells are switched to a nutrient-poor environment that stimulates macroautophagy and that is also reminiscent of certain phases of tumour growth. Inhibition of BRCA1 synthesis has an important role in this reduction, while there are almost no changes in BRCA1 degradation by lysosomes and proteasomes. Therefore, BRCA1 produces macroautophagy inhibition by reducing the formation of autophagic vacuoles, and this, together with the other results presented here, shows new functional aspects of BRCA1 that could help to clarify the role of autophagy in cancer development.


Assuntos
Autofagia , Proteína BRCA1/fisiologia , Neoplasias da Mama/patologia , Mitocôndrias/metabolismo , Vacúolos/metabolismo , Western Blotting , Neoplasias da Mama/metabolismo , Feminino , Citometria de Fluxo , Humanos , Lisossomos , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
2.
Proteins ; 66(3): 726-39, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17143896

RESUMO

The Escherichia coli MnmE protein is a 50-kDa multidomain GTPase involved in tRNA modification. Its homologues in eukaryotes are crucial for mitochondrial respiration and, thus, it is thought that the human protein might be involved in mitochondrial diseases. Unlike Ras, MnmE shows a high intrinsic GTPase activity and requires effective GTP hydrolysis, and not simply GTP binding, to be functionally active. The isolated MnmE G-domain (165 residues) conserves the GTPase activity of the entire protein, suggesting that it contains the catalytic residues for GTP hydrolysis. To explore the GTP hydrolysis mechanism of MnmE, we analyzed the effect of low pH on binding and hydrolysis of GTP, as well as on the formation of a MnmE transition state mimic. GTP hydrolysis by MnmE, but not GTP binding or formation of a complex with mant-GDP and aluminium fluoride, is impaired at acidic pH, suggesting that the chemistry of the transition state mimic is different to that of the true transition state, and that some residue(s), critical for GTP hydrolysis, is severely affected by low pH. We use a nuclear magnetic resonance (NMR)-based approach to get insights into the MnmE structure and properties. The combined use of NMR restraints and homology structural information allowed the determination of the MnmE G-domain structure in its free form. Chemical shift structure-based prediction provided a good basis for structure refinement and validation. Our data support that MnmE, unlike other GTPases, does not use an arginine finger to drive catalysis, although Arg252 may play a role in stabilization of the transition state.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
Int J Biochem Cell Biol ; 38(8): 1340-51, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16530458

RESUMO

Pathogenic mutations in the low-density lipoprotein receptor prevent cholesterol uptake and cause familial hypercholesterolemia. In comparison to the biogenesis and endocytic trafficking of this receptor and some of its mutants, their degradation mechanisms are not well understood. Therefore, to gain some insights into this aspect, we analyzed the effects of proteasomal and lysosomal inhibitors on the levels of the wild type low-density lipoprotein receptor and a mutant form, C358Y, which was prevalent in a sample of Spanish familial hypercholesterolemia patients. In transfected cells, the mutant C358Y exhibited lower activity than the wild type receptor, as well as retarded post-translational processing of its precursor to the mature form. Interestingly, about 30% of the mutant precursor was degraded by a lysosomal pathway. Moreover, its mature form was more rapidly degraded than the wild type receptor (half lives of 5.3 and 10.9 h, respectively) and its degradation was exclusively dependent on a lysosomal pathway. In contrast, the mature form of the wild type receptor was mainly degraded by proteasomes and, to a minor extent (30%), by lysosomes. We conclude that a single mutation in the low-density lipoprotein receptor switches the degradation of the mature receptor from a proteasomal to a lysosomal pathway which degrades the protein at a faster rate. This suggests cooperation of proteasomes and lysosomes in the degradation of the low-density lipoprotein receptor and adds an intriguing new aspect to our understanding of receptor-mediated endocytosis.


Assuntos
Lisossomos/metabolismo , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de LDL/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacocinética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Inibidores de Proteassoma , Processamento de Proteína Pós-Traducional , Receptores de LDL/genética , Transdução de Sinais/efeitos dos fármacos
4.
Hum Mutat ; 21(4): 452, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12655574

RESUMO

A frame-shift 9254del5 mutation was independently identified in 12 families, eleven of them with Spanish ancestors, in a BRCA2 screening performed in 841 breast and/or ovarian cancer families and in 339 women with breast cancer diagnosed before the age of 40 at different centers in France and Spain. We sought to analyze in detail the haplotype and founder effects of the 9254del5 and to estimate the time of origin of the mutation. Eight polymorphic microsatellite markers and two BRCA2 polymorphisms were used for the haplotype analyses. The markers were located flanking the BRCA2 gene spanning a region of 6.1 cM. Our results suggest that these families shared a common ancestry with BRCA2 9254del5, which is a founder mutation originating in the Northeast Spanish, with an estimated age of 92 (95% CI 56-141) generations.


Assuntos
Neoplasias da Mama Masculina/genética , Neoplasias da Mama/genética , Genes BRCA2 , Haplótipos/genética , Mutação , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama Masculina/epidemiologia , Feminino , Efeito Fundador , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/epidemiologia , Fenótipo , Recidiva , Espanha/epidemiologia
5.
Biomedica ; 34 Suppl 1: 41-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24968035

RESUMO

INTRODUCTION: Aminoglycosides like streptomycin are well-known for binding at specific regions of ribosome RNA and then acting as translation inhibitors. Nowadays, several pathogens have been detected to acquire an undefined strategy involving mutation at non structural ribosome genes like those acting as RNA methylases. rsmG is one of those genes which encodes an AdoMet-dependent methyltransferase responsible for the synthesis of m 7 G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m 7 G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. OBJECTIVES: After taking into account genetic information indicating that some clinical isolates of human pathogens show streptomycin resistance associated with mutations at rsmG , we decided to explore new hot spots for mutation capable of impairing the RsmG in vivo function and of promoting low-level streptomycin resistance. MATERIALS AND METHODS: To gain insights into the molecular and genetic mechanism of acquiring this aminoglycoside resistance phenotype and the emergence of high-level streptomycin resistance in rsmG mutants, we mutated Escherichia coli rsmG and also performed a genotyping study on rpsL from several isolates showing the ability to grow at higher streptomycin concentrations than parental strains. RESULTS: We found that the mutations at rpsL were preferentially present in these mutants, and we observed a clear synergy between rsmG and rpsL genes to induce streptomycin resistance. CONCLUSION: We contribute to understand a common mechanism that is probably transferable to other ribosome RNA methylase genes responsible for modifications at central sites for ribosome function.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Metiltransferases/genética , Mutação de Sentido Incorreto , Mutação Puntual , Processamento Pós-Transcricional do RNA/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/metabolismo , Estreptomicina/farmacologia , Sequência de Aminoácidos , Sítios de Ligação/genética , Domínio Catalítico/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína S9 Ribossômica , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Homologia de Sequência de Aminoácidos
6.
Biomédica (Bogotá) ; 34(supl.1): 41-49, abr. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-712420

RESUMO

Introduction: Aminoglycosides like streptomycin are well-known for binding at specific regions of ribosome RNA and then acting as translation inhibitors. Nowadays, several pathogens have been detected to acquire an undefined strategy involving mutation at non structural ribosome genes like those acting as RNA methylases. rsmG is one of those genes which encodes an AdoMet-dependent methyltransferase responsible for the synthesis of m 7 G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m 7 G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Objectives: After taking into account genetic information indicating that some clinical isolates of human pathogens show streptomycin resistance associated with mutations at rsmG , we decided to explore new hot spots for mutation capable of impairing the RsmG in vivo function and of promoting low-level streptomycin resistance. Materials and methods: To gain insights into the molecular and genetic mechanism of acquiring this aminoglycoside resistance phenotype and the emergence of high-level streptomycin resistance in rsmG mutants, we mutated Escherichia coli rsmG and also performed a genotyping study on rpsL from several isolates showing the ability to grow at higher streptomycin concentrations than parental strains. Results: We found that the mutations at rpsL were preferentially present in these mutants, and we observed a clear synergy between rsmG and rpsL genes to induce streptomycin resistance. Conclusion: We contribute to understand a common mechanism that is probably transferable to other ribosome RNA methylase genes responsible for modifications at central sites for ribosome function.


Introducción. Los aminoglucósidos son moléculas antibióticas capaces de inhibir la síntesis de proteínas bacterianas tras su unión al ribosoma procariota. La resistencia a aminoglucósidos está clásicamente asociada a mutaciones en genes estructurales del ribosoma bacteriano; sin embargo, varios estudios recientes han demostrado, de forma recurrente, la presencia de un nuevo mecanismo dependiente de mutación que no involucra genes estructurales. El gen rsmG es uno de ellos y se caracteriza por codificar una metiltransferasa que sintetiza el nucleósido m 7 G527 localizado en el loop 530 del ribosoma bacteriano, este último caracterizado como sitio preferencial al cual se une la estreptomicina. Objetivo. Partiendo de las recientes asociaciones clínicas entre las mutaciones en el gen rsmG y la resistencia a estreptomicina, este estudio se propuso la caracterización de nuevos puntos calientes de mutación en este gen que puedan causar resistencia a estreptomicina usando Escherichia coli como modelo de estudio. Materiales y métodos. Se indagó sobre el mecanismo genético y molecular por el cual se adquiere la resistencia a estreptomicina y su transición a la resistencia a altas dosis mediante mutagénesis dirigida del gen rsmG y genotipificación del gen rpsL . Resultados. Se encontró que la mutación N39A en rsmG inactiva la proteína y se reportó un nuevo conjunto de mutaciones en rpsL que confieren resistencia a altas dosis de estreptomicina. Conclusiones. Aunque los mecanismos genéticos subyacentes permanecen sin esclarecer, se concluyó que dichos patrones secuenciales de mutación podrían tener lugar en otros genes modificadores del ARN bacteriano debido a la conservación evolutiva y al papel crítico que juegan tales modificaciones en la síntesis de proteínas.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Mutação de Sentido Incorreto , Metiltransferases/genética , Mutação Puntual , Processamento Pós-Transcricional do RNA/genética , RNA Bacteriano/metabolismo , /metabolismo , Estreptomicina/farmacologia , Sequência de Aminoácidos , Sítios de Ligação/genética , Domínio Catalítico/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Metiltransferases/química , Metiltransferases/metabolismo , Filogenia , Conformação Proteica , RNA Bacteriano/genética , /genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Homologia de Sequência de Aminoácidos
7.
J Biol Chem ; 278(31): 28378-87, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12730230

RESUMO

The Escherichia coli MnmE protein is a three-domain protein that exhibits a very high intrinsic GTPase activity and low affinity for GTP and GDP. The middle GTPase domain, when isolated, conserves the high intrinsic GTPase activity of the entire protein, and the C-terminal domain contains the only cysteine residue present in the molecule. MnmE is an evolutionarily conserved protein that, in E. coli, has been shown to control the modification of the uridine at the wobble position of certain tRNAs. Here we examine the biochemical and functional consequences of altering amino acid residues within conserved motifs of the GTPase and C-terminal domains of MnmE. Our results indicate that both domains are essential for the MnmE tRNA modifying function, which requires effective hydrolysis of GTP. Thus, it is shown for the first time that a confirmed defect in the GTP hydrolase activity of MnmE results in the lack of its tRNA modifying function. Moreover, the mutational analysis of the GTPase domain indicates that MnmE is closer to classical GTPases than to GTP-specific metabolic enzymes. Therefore, we propose that MnmE uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the C-terminal Cys may function as a catalytic residue. We demonstrate that point mutations abolishing the tRNA modifying function of MnmE confer synthetic lethality, which stresses the importance of this function in the mRNA decoding process.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Cisteína , Escherichia coli/química , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/fisiologia , RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , GTP Fosfo-Hidrolases/química , Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/metabolismo , Hidrólise , Mutagênese Sítio-Dirigida , Nucleotídeos/farmacologia , Fragmentos de Peptídeos/química , Mutação Puntual , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA