Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 27(3): 435-445, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36644817

RESUMO

Microglia are the primary resident immune cells in the retina. They regulate neuronal survival and synaptic pruning making them essential for normal development. Following injury, they mediate adaptive responses and under pathological conditions they can trigger neurodegeneration exacerbating the effect of a disease. Retinal organoids derived from human induced pluripotent stem cells (hiPSCs) are increasingly being used for a range of applications, including disease modelling, development of new therapies and in the study of retinogenesis. Despite many similarities to the retinas developed in vivo, they lack some key physiological features, including immune cells. We engineered an hiPSC co-culture system containing retinal organoids and microglia-like (iMG) cells and tested their retinal invasion capacity and function. We incorporated iMG into retinal organoids at 13 weeks and tested their effect on function and development at 15 and 22 weeks of differentiation. Our key findings showed that iMG cells were able to respond to endotoxin challenge in monocultures and when co-cultured with the organoids. We show that retinal organoids developed normally and retained their ability to generate spiking activity in response to light. Thus, this new co-culture immunocompetent in vitro retinal model provides a platform with greater relevance to the in vivo human retina.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microglia , Retina , Organoides , Diferenciação Celular
2.
Cell Biol Toxicol ; 39(1): 1-18, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35641671

RESUMO

The airway epithelium represents the main barrier between inhaled air and the tissues of the respiratory tract and is therefore an important point of contact with xenobiotic substances into the human body. Several studies have recently shown that in vitro models of the airway grown at an air-liquid interface (ALI) can be particularly useful to obtain mechanistic information about the toxicity of chemical compounds. However, such methods are not very amenable to high throughput since the primary cells cannot be expanded indefinitely in culture to obtain a sustainable number of cells. Induced pluripotent stem cells (iPSCs) have become a popular option in the recent years for modelling the airways of the lung, but despite progress in the field, such models have so far not been assessed for their ability to metabolise xenobiotic compounds and how they compare to the primary bronchial airway model (pBAE). Here, we report a comparative analysis by TempoSeq (oligo-directed sequencing) of an iPSC-derived airway model (iBAE) with a primary bronchial airway model (pBAE). The iBAE and pBAE were differentiated at an ALI and then evaluated in a 5-compound screen with exposure to a sub-lethal concentration of each compound for 24 h. We found that despite lower expression of xenobiotic metabolism genes, the iBAE similarly predicted the toxic pathways when compared to the pBAE model. Our results show that iPSC airway models at ALI show promise for inhalation toxicity assessments with further development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Transcriptoma , Xenobióticos/toxicidade , Xenobióticos/metabolismo , Mucosa Respiratória/metabolismo , Epitélio , Células Epiteliais/metabolismo
3.
Stem Cells ; 39(7): 882-896, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33657251

RESUMO

Retinal dystrophies often lead to blindness. Developing therapeutic interventions to restore vision is therefore of paramount importance. Here we demonstrate the ability of pluripotent stem cell-derived cone precursors to engraft and restore light responses in the Pde6brd1 mouse, an end-stage photoreceptor degeneration model. Our data show that up to 1.5% of precursors integrate into the host retina, differentiate into cones, and engraft in close apposition to the host bipolar cells. Half of the transplanted mice exhibited visual behavior and of these 33% showed binocular light sensitivity. The majority of retinal ganglion cells exhibited contrast-sensitive ON, OFF or ON-OFF light responses and even motion sensitivity; however, quite a few exhibited unusual responses (eg, light-induced suppression), presumably reflecting remodeling of the neural retina. Our data indicate that despite relatively low engraftment yield, pluripotent stem cell-derived cone precursors can elicit light responsiveness even at advanced degeneration stages. Further work is needed to improve engraftment yield and counteract retinal remodeling to achieve useful clinical applications.


Assuntos
Células-Tronco Pluripotentes , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Transplante de Células-Tronco , Animais , Camundongos , Células-Tronco Pluripotentes/transplante , Degeneração Retiniana/terapia , Células Ganglionares da Retina/patologia
4.
Stem Cells ; 39(10): 1310-1321, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152044

RESUMO

As one of the primary points of entry of xenobiotic substances and infectious agents into the body, the lungs are subject to a range of dysfunctions and diseases that together account for a significant number of patient deaths. In view of this, there is an outstanding need for in vitro systems in which to assess the impact of both infectious agents and xenobiotic substances of the lungs. To address this issue, we have developed a protocol to generate airway epithelial basal-like cells from induced pluripotent stem cells, which simplifies the manufacture of cellular models of the human upper airways. Basal-like cells generated in this study were cultured on transwell inserts to allow formation of a confluent monolayer and then exposed to an air-liquid interface to induce differentiation into a pseudostratified epithelial construct with a marked similarity to the upper airway epithelium in vivo. These constructs contain the component cell types required of an epithelial model system, produce mucus and functional cilia, and can support SARS-CoV-2 infection/replication and the secretion of cytokines in a manner similar to that of in vivo airways. This method offers a readily accessible and highly scalable protocol for the manufacture of upper airway models that could find applications in development of therapies for respiratory viral infections and the assessment of drug toxicity on the human lungs.


Assuntos
COVID-19/patologia , COVID-19/virologia , Células-Tronco Pluripotentes Induzidas/patologia , Pulmão/patologia , Pulmão/virologia , Modelos Biológicos , SARS-CoV-2/fisiologia , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Mediadores da Inflamação/metabolismo , Replicação Viral/fisiologia
5.
Stem Cells ; 38(2): 195-201, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31721366

RESUMO

Induced pluripotent stem cell (iPSC)-derived retinal organoids provide a platform to study human retinogenesis, disease modeling, and compound screening. Although retinal organoids may represent tissue structures with greater physiological relevance to the in vivo human retina, their generation is not without limitations. Various protocols have been developed to enable development of organoids with all major retinal cell types; however, variability across iPSC lines is often reported. Modulating signaling pathways important for eye formation, such as those involving bone morphogenetic protein 4 (BMP4) and insulin-like growth factor 1 (IGF1), is a common approach used for the generation of retinal tissue in vitro. We used three human iPSC lines to generate retinal organoids by activating either BMP4 or IGF1 signaling and assessed differentiation efficiency by monitoring morphological changes, gene and protein expression, and function. Our results showed that the ability of iPSC to give rise to retinal organoids in response to IGF1 and BMP4 activation was line- and method-dependent. This demonstrates that careful consideration is needed when choosing a differentiation approach, which would also depend on overall project aims.

6.
Stem Cells ; 38(10): 1321-1325, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32614127

RESUMO

Increased pollution by plastics has become a serious global environmental problem, but the concerns for human health have been raised after reported presence of microplastics (MPs) and nanoplastics (NPs) in food and beverages. Unfortunately, few studies have investigate the potentially harmful effects of MPs/NPs on early human development and human health. Therefore, we used a new platform to study possible effects of polystyrene NPs (PSNPs) on the transcription profile of preimplantation human embryos and human induced pluripotent stem cells (hiPSCs). Two pluripotency genes, LEFTY1 and LEFTY2, which encode secreted ligands of the transforming growth factor-beta, were downregulated, while CA4 and OCLM, which are related to eye development, were upregulated in both samples. The gene set enrichment analysis showed that the development of atrioventricular heart valves and the dysfunction of cellular components, including extracellular matrix, were significantly affected after exposure of hiPSCs to PSNPs. Finally, using the HiPathia method, which uncovers disease mechanisms and predicts clinical outcomes, we determined the APOC3 circuit, which is responsible for increased risk for ischemic cardiovascular disease. These results clearly demonstrate that better understanding of NPs bioactivities and its implications for human health is of extreme importance. Thus, the presented platform opens further aspects to study interactions between different environmental and intracellular pollutions with the aim to decipher the mechanism and origin of human diseases.


Assuntos
Poluição Ambiental/análise , Nanopartículas/química , Plásticos/análise , Poliestirenos/química , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Espaço Intracelular , Transcriptoma/genética , Resultado do Tratamento
7.
Stem Cells ; 37(3): 318-331, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30512203

RESUMO

Direct reprogramming of human somatic cells toward induced pluripotent stem cells holds great promise for regenerative medicine and basic biology. We used a high-throughput small interfering RNA screening assay in the initiation phase of reprogramming for 784 genes belonging to kinase and phosphatase families and identified 68 repressors and 22 effectors. Six new candidates belonging to the family of the G protein-coupled receptors (GPCRs) were identified, suggesting an important role for this key signaling pathway during somatic cell-induced reprogramming. Downregulation of one of the key GPCR effectors, endothelial differentiation GPCR5 (EDG5), impacted the maintenance of pluripotency, actin cytoskeleton organization, colony integrity, and focal adhesions in human embryonic stem cells, which were associated with the alteration in the RhoA-ROCK-Cofilin-PAXILLIN-actin signaling pathway. Similarly, downregulation of EDG5 during the initiation stage of somatic cell-induced reprogramming resulted in alteration of cytoskeleton, loss of human-induced pluripotent stem cell colony integrity, and a significant reduction in partially and fully reprogrammed cells as well as the number of alkaline phosphatase positive colonies at the end of the reprogramming process. Together, these data point to an important role of EDG5 in the maintenance and acquisition of pluripotency. Stem Cells 2019;37:318-331.


Assuntos
Reprogramação Celular , Regulação para Baixo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/metabolismo , Linhagem Celular , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Receptores de Esfingosina-1-Fosfato/genética
8.
Stem Cells ; 37(5): 609-622, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681766

RESUMO

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.


Assuntos
Diferenciação Celular/genética , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/transplante , Degeneração Retiniana/terapia , Animais , Linhagem da Célula/genética , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Organoides/transplante , Células-Tronco Pluripotentes/transplante , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/transplante , Transcriptoma/genética
9.
Mol Pharmacol ; 96(4): 475-484, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399497

RESUMO

Topoisomerase II (TOP2) poisons are effective cytotoxic anticancer agents that stabilize the normally transient TOP2-DNA covalent complexes formed during the enzyme reaction cycle. These drugs include etoposide, mitoxantrone, and the anthracyclines doxorubicin and epirubicin. Anthracyclines also exert cell-killing activity via TOP2-independent mechanisms, including DNA adduct formation, redox activity, and lipid peroxidation. Here, we show that anthracyclines and another intercalating TOP2 poison, mitoxantrone, stabilize TOP2-DNA covalent complexes less efficiently than etoposide, and at higher concentrations they suppress the formation of TOP2-DNA covalent complexes, thus behaving as TOP2 poisons at low concentration and inhibitors at high concentration. We used induced pluripotent stem cell (iPSC)-derived human cardiomyocytes as a model to study anthracycline-induced damage in cardiac cells. Using immunofluorescence, our study is the first to demonstrate the presence of topoisomerase IIß (TOP2B) as the only TOP2 isoform in iPSC-derived cardiomyocytes. In these cells, etoposide robustly induced TOP2B covalent complexes, but we could not detect doxorubicin-induced TOP2-DNA complexes, and doxorubicin suppressed etoposide-induced TOP2-DNA complexes. In vitro, etoposide-stabilized DNA cleavage was attenuated by doxorubicin, epirubicin, or mitoxantrone. Clinical use of anthracyclines is associated with cardiotoxicity. The observations in this study have potentially important clinical consequences regarding the effectiveness of anticancer treatment regimens when TOP2-targeting drugs are used in combination. These observations suggest that inhibition of TOP2B activity, rather than DNA damage resulting from TOP2 poisoning, may play a role in doxorubicin cardiotoxicity. SIGNIFICANCE STATEMENT: We show that anthracyclines and mitoxantrone act as topoisomerase II (TOP2) poisons at low concentration but attenuate TOP2 activity at higher concentration, both in cells and in in vitro cleavage experiments. Inhibition of type II topoisomerases suppresses the action of other drugs that poison TOP2. Thus, combinations containing anthracyclines or mitoxantrone and etoposide may reduce the activity of etoposide as a TOP2 poison and thus reduce the efficacy of drug combinations.


Assuntos
Antraciclinas/farmacologia , Adutos de DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Etoposídeo/farmacologia , Mitoxantrona/farmacologia , Cardiotoxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/efeitos adversos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células K562 , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores da Topoisomerase II/farmacologia
10.
Hum Mol Genet ; 26(16): 3031-3045, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28521042

RESUMO

Hypoplastic left heart syndrome (HLHS) is among the most severe forms of congenital heart disease. Although the consensus view is that reduced flow through the left heart during development is a key factor in the development of the condition, the molecular mechanisms leading to hypoplasia of left heart structures are unknown. We have generated induced pluripotent stem cells (iPSC) from five HLHS patients and two unaffected controls, differentiated these to cardiomyocytes and identified reproducible in vitro cellular and functional correlates of the HLHS phenotype. Our data indicate that HLHS-iPSC have a reduced ability to give rise to mesodermal, cardiac progenitors and mature cardiomyocytes and an enhanced ability to differentiate to smooth muscle cells. HLHS-iPSC-derived cardiomyocytes are characterised by a lower beating rate, disorganised sarcomeres and sarcoplasmic reticulum and a blunted response to isoprenaline. Whole exome sequencing of HLHS fibroblasts identified deleterious variants in NOTCH receptors and other genes involved in the NOTCH signalling pathway. Our data indicate that the expression of NOTCH receptors was significantly downregulated in HLHS-iPSC-derived cardiomyocytes alongside NOTCH target genes confirming downregulation of NOTCH signalling activity. Activation of NOTCH signalling via addition of Jagged peptide ligand during the differentiation of HLHS-iPSC restored their cardiomyocyte differentiation capacity and beating rate and suppressed the smooth muscle cell formation. Together, our data provide firm evidence for involvement of NOTCH signalling in HLHS pathogenesis, reveal novel genetic insights important for HLHS pathology and shed new insights into the role of this pathway during human cardiac development.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico/metabolismo , Síndrome do Coração Esquerdo Hipoplásico/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Receptor Notch1/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Organogênese , Transdução de Sinais/fisiologia
11.
Stem Cells ; 36(1): 55-64, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047185

RESUMO

Hematopoietic stem cells derived from pluripotent stem cells could be used as an alternative to bone marrow transplants. Deriving these has been a long-term goal for researchers. However, the success of these efforts has been limited with the cells produced able to engraft in the bone marrow of recipient animals only in very low numbers. There is evidence that defects in the migratory and homing capacity of the cells are due to mis-regulation of miRNA expression and are responsible for their failure to engraft. We compared the miRNA expression profile of hematopoietic progenitors derived from pluripotent stem cells to those derived from bone marrow and found that numerous miRNAs are too highly expressed in hematopoietic progenitors derived from pluripotent stem cells, and that most of these are inhibitors of epithelial-mesenchymal transition or metastasis (including miR-200b, miR-200c, miR-205, miR-148a, and miR-424). We hypothesize that the high expression of these factors, which promote an adherent phenotype, may be causing the defect in hematopoietic differentiation. However, inhibiting these miRNAs, individually or in multiplex, was insufficient to improve hematopoietic differentiation in vitro, suggesting that other miRNAs and/or genes may be involved in this process. Stem Cells 2018;36:55-64.


Assuntos
Transição Epitelial-Mesenquimal/genética , Células-Tronco Hematopoéticas/metabolismo , MicroRNAs/genética , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Regulação para Baixo , Humanos
12.
Stem Cells ; 36(3): 337-348, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29226476

RESUMO

Cornea is a clear outermost layer of the eye which enables transmission of light onto the retina. The transparent corneal epithelium is regenerated by limbal stem cells (LSCs), whose loss/dysfunction results in LSCs deficiency (LSCD). Ex vivo expansion of autologous LSCs obtained from patient's healthy eye followed by transplantation onto the LSCs damaged/deficient eye, has provided a successful treatment for unilateral LSCD. However, this is not applicable to patient with total bilateral LSCD, where LSCs are lost/damaged from both eyes. We investigated the potential of human induced pluripotent stem cell (hiPSC) to differentiate into corneal epithelial-like cells as a source of autologous stem cell treatment for patients with total bilateral LSCD. Our study showed that combined addition of bone morphogenetic protein 4 (BMP4), all trans-retinoic acid and epidermal growth factor for the first 9 days of differentiation followed by cell-replating on collagen-IV-coated surfaces with a corneal-specific-epithelial cell media for an additional 11 days, resulted in step wise differentiation of human embryonic stem cells (hESC) to corneal epithelial progenitors and mature corneal epithelial-like cells. We observed differences in the ability of hiPSC lines to undergo differentiation to corneal epithelial-like cells which were dependent on the level of endogenous BMP signaling and could be restored via the activation of this signaling pathway by a specific transforming growth factor ß inhibitor (SB431542). Together our data reveal a differential ability of hiPSC lines to generate corneal epithelial cells which is underlined by the activity of endogenous BMP signaling pathway. Stem Cells 2018;36:337-348.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células 3T3 , Animais , Benzamidas/farmacologia , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Dioxóis/farmacologia , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Imunofluorescência , Humanos , Linfotoxina-alfa/antagonistas & inibidores , Linfotoxina-alfa/metabolismo , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
13.
Stem Cells ; 36(10): 1535-1551, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004612

RESUMO

The availability of in vitro models of the human retina in which to perform pharmacological and toxicological studies is an urgent and unmet need. An essential step for developing in vitro models of human retina is the ability to generate laminated, physiologically functional, and light-responsive retinal organoids from renewable and patient specific sources. We investigated five different human-induced pluripotent stem cell (iPSC) lines and showed a significant variability in their efficiency to generate retinal organoids. Despite this variability, by month 5 of differentiation, all iPSC-derived retinal organoids were able to generate light responses, albeit immature, comparable to the earliest light responses recorded from the neonatal mouse retina, close to the period of eye opening. All iPSC-derived retinal organoids exhibited at this time a well-formed outer nuclear like layer containing photoreceptors with inner segments, connecting cilium, and outer like segments. The differentiation process was highly dependent on seeding cell density and nutrient availability determined by factorial experimental design. We adopted the differentiation protocol to a multiwell plate format, which enhanced generation of retinal organoids with retinal-pigmented epithelium (RPE) and improved ganglion cell development and the response to physiological stimuli. We tested the response of iPSC-derived retinal organoids to Moxifloxacin and showed that similarly to in vivo adult mouse retina, the primary affected cell types were photoreceptors. Together our data indicate that light responsive retinal organoids derived from carefully selected and differentiation efficient iPSC lines can be generated at the scale needed for pharmacology and drug screening purposes. Stem Cells 2018;36:1535-1551.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Nutrientes/genética , Organoides/metabolismo , Retina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Organoides/citologia , Retina/citologia
14.
Stem Cells ; 35(2): 284-298, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870251

RESUMO

Bone marrow failure syndromes (BMFS) are a group of disorders with complex pathophysiology characterized by a common phenotype of peripheral cytopenia and/or hypoplastic bone marrow. Understanding genetic factors contributing to the pathophysiology of BMFS has enabled the identification of causative genes and development of diagnostic tests. To date more than 40 mutations in genes involved in maintenance of genomic stability, DNA repair, ribosome and telomere biology have been identified. In addition, pathophysiological studies have provided insights into several biological pathways leading to the characterization of genotype/phenotype correlations as well as the development of diagnostic approaches and management strategies. Recent developments in bone marrow transplant techniques and the choice of conditioning regimens have helped improve transplant outcomes. However, current morbidity and mortality remain unacceptable underlining the need for further research in this area. Studies in mice have largely been unable to mimic disease phenotype in humans due to difficulties in fully replicating the human mutations and the differences between mouse and human cells with regard to telomere length regulation, processing of reactive oxygen species and lifespan. Recent advances in induced pluripotency have provided novel insights into disease pathogenesis and have generated excellent platforms for identifying signaling pathways and functional mapping of haplo-insufficient genes involved in large-scale chromosomal deletions-associated disorders. In this review, we have summarized the current state of knowledge in the field of BMFS with specific focus on modeling the inherited forms and how to best utilize these models for the development of targeted therapies. Stem Cells 2017;35:284-298.


Assuntos
Anemia Aplástica/patologia , Doenças da Medula Óssea/patologia , Medula Óssea/patologia , Hemoglobinúria Paroxística/patologia , Animais , Transtornos da Insuficiência da Medula Óssea , Modelos Animais de Doenças , Humanos , Modelos Biológicos
15.
Stem Cells ; 35(11): 2305-2320, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28913923

RESUMO

Age-related macular degeneration (AMD) is the most common cause of blindness, accounting for 8.7% of all blindness globally. Vision loss is caused ultimately by apoptosis of the retinal pigment epithelium (RPE) and overlying photoreceptors. Treatments are evolving for the wet form of the disease; however, these do not exist for the dry form. Complement factor H polymorphism in exon 9 (Y402H) has shown a strong association with susceptibility to AMD resulting in complement activation, recruitment of phagocytes, RPE damage, and visual decline. We have derived and characterized induced pluripotent stem cell (iPSC) lines from two subjects without AMD and low-risk genotype and two patients with advanced AMD and high-risk genotype and generated RPE cells that show local secretion of several proteins involved in the complement pathway including factor H, factor I, and factor H-like protein 1. The iPSC RPE cells derived from high-risk patients mimic several key features of AMD including increased inflammation and cellular stress, accumulation of lipid droplets, impaired autophagy, and deposition of "drüsen"-like deposits. The low- and high-risk RPE cells respond differently to intermittent exposure to UV light, which leads to an improvement in cellular and functional phenotype only in the high-risk AMD-RPE cells. Taken together, our data indicate that the patient specific iPSC model provides a robust platform for understanding the role of complement activation in AMD, evaluating new therapies based on complement modulation and drug testing. Stem Cells 2017;35:2305-2320.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/terapia , Raios Ultravioleta , Terapia Ultravioleta/métodos , Idoso , Animais , Fator H do Complemento/metabolismo , Humanos , Degeneração Macular/etiologia , Camundongos , Camundongos SCID
16.
Int J Med Sci ; 15(1): 36-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29333086

RESUMO

Results obtained from completed and on-going clinical studies indicate huge therapeutic potential of stem cell-based therapy in the treatment of degenerative, autoimmune and genetic disorders. However, clinical application of stem cells raises numerous ethical and safety concerns. In this review, we provide an overview of the most important ethical issues in stem cell therapy, as a contribution to the controversial debate about their clinical usage in regenerative and transplantation medicine. We describe ethical challenges regarding human embryonic stem cell (hESC) research, emphasizing that ethical dilemma involving the destruction of a human embryo is a major factor that may have limited the development of hESC-based clinical therapies. With previous derivation of induced pluripotent stem cells (iPSCs) this problem has been overcome, however current perspectives regarding clinical translation of iPSCs still remain. Unlimited differentiation potential of iPSCs which can be used in human reproductive cloning, as a risk for generation of genetically engineered human embryos and human-animal chimeras, is major ethical issue, while undesired differentiation and malignant transformation are major safety issues. Although clinical application of mesenchymal stem cells (MSCs) has shown beneficial effects in the therapy of autoimmune and chronic inflammatory diseases, the ability to promote tumor growth and metastasis and overestimated therapeutic potential of MSCs still provide concerns for the field of regenerative medicine. This review offers stem cell scientists, clinicians and patient's useful information and could be used as a starting point for more in-depth analysis of ethical and safety issues related to clinical application of stem cells.


Assuntos
Pesquisa Biomédica/ética , Transplante de Células/ética , Engenharia Genética/ética , Terapia Genética/ética , Células-Tronco Embrionárias Humanas/transplante , Animais , Pesquisa Biomédica/métodos , Técnicas de Cultura de Células/ética , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Transplante de Células/métodos , Quimera/genética , Embrião de Mamíferos/citologia , Engenharia Genética/efeitos adversos , Engenharia Genética/métodos , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/ética , Medicina Regenerativa/ética , Medicina Regenerativa/métodos
17.
Anal Chem ; 89(4): 2440-2448, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28192931

RESUMO

Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteoma/análise , Proteômica , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Espectrometria de Massas/métodos , Proteoma/metabolismo , Pele/citologia , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo
18.
Stem Cells ; 34(9): 2306-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27339422

RESUMO

Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are defined as pluripotent in view of their self-renewal ability and potential to differentiate to cells of all three germ layers. Recent studies have indicated that microRNAs (miRNAs) play an important role in the maintenance of pluripotency and cell cycle regulation. We used a microarray based approach to identify miRNAs that were enriched in hESCs when compared to differentiated cells and at the same time showed significant expression changes between different phases of cell cycle. We identified 34 candidate miRNAs and performed functional studies on one of these, miR-1305, which showed the highest expression change during cell cycle transition. Overexpression of miR-1305 induced differentiation of pluripotent stem cells, increased cell apoptosis and sped up G1/S transition, while its downregulation facilitated the maintenance of pluripotency and increased cell survival. Using target prediction software and luciferase based reporter assays we identified POLR3G as a downstream target by which miR-1305 regulates the fine balance between maintenance of pluripotency and onset of differentiation. Overexpression of POLR3G rescued pluripotent stem cell differentiation induced by miR-1305 overexpression. In contrast, knock-down of POLR3G expression abolished the miR-1305-knockdown mediated enhancement of pluripotency, thus validating its role as miR-1305 target in human pluripotent stem cells. Together our data point to an important role for miR-1305 as a novel regulator of pluripotency, cell survival and cell cycle and uncovers new mechanisms and networks by which these processes are intertwined in human pluripotent stem cells. Stem Cells 2016;34:2306-2317.


Assuntos
Apoptose/genética , Ciclo Celular/genética , Diferenciação Celular/genética , MicroRNAs/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Polimerase III/metabolismo
19.
Stem Cells ; 34(1): 246-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26418476

RESUMO

MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR-145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR-145 in DFs led to the induction of "cellular plasticity" demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency-associated genes including SOX2, KLF4, C-MYC; (c) downregulation of miRNA let-7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR-145 and molecular pathways underlying reprogramming of somatic cells to iPSCs.


Assuntos
Reprogramação Celular , Derme/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/metabolismo , Sequência de Bases , Reprogramação Celular/genética , Regulação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , MicroRNAs/genética , Dados de Sequência Molecular , Reprodutibilidade dos Testes
20.
Stem Cells ; 34(5): 1198-212, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26867034

RESUMO

Reprogramming of somatic cells to the phenotypic state termed "induced pluripotency" is thought to occur through three consecutive stages: initiation, maturation, and stabilisation. The initiation phase is stochastic but nevertheless very important as it sets the gene expression pattern that permits completion of reprogramming; hence a better understanding of this phase and how this is regulated may provide the molecular cues for improving the reprogramming process. c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPKs) are stress activated MAPK kinases that play an essential role in several processes known to be important for successful completion of the initiation phase such as cellular proliferation, mesenchymal to epithelial transition (MET) and cell cycle regulation. In view of this, we postulated that manipulation of this pathway would have significant impacts on reprogramming of human fibroblasts to induced pluripotent stem cells. Accordingly, we found that key components of the JNK/SAPK signaling pathway increase expression as early as day 3 of the reprogramming process and continue to rise in reprogrammed cells throughout the initiation and maturation stages. Using both chemical inhibitors and RNA interference of MKK4, MKK7 and JNK1, we tested the role of JNK/SAPK signaling during the initiation stage of neonatal and adult fibroblast reprogramming. These resulted in complete abrogation of fully reprogrammed colonies and the emergence of partially reprogrammed colonies which disaggregated and were lost from culture during the maturation stage. Inhibition of JNK/SAPK signaling resulted in reduced cell proliferation, disruption of MET and loss of the pluripotent phenotype, which either singly or in combination prevented establishment of pluripotent colonies. Together these data provide new evidence for an indispensable role for JNK/SAPK signaling to overcome the well-established molecular barriers in human somatic cell induced reprogramming. Stem Cells 2016;34:1198-1212.


Assuntos
Reprogramação Celular , Fibroblastos/citologia , Fibroblastos/enzimologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Adulto , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Recém-Nascido , Mesoderma/citologia , Modelos Biológicos , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA