Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(12): 5836-5841, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37084706

RESUMO

Many protein condensates can convert to fibrillar aggregates, but the underlying mechanisms are unclear. Liquid-liquid phase separation (LLPS) of spider silk proteins, spidroins, suggests a regulatory switch between both states. Here, we combine microscopy and native mass spectrometry to investigate the influence of protein sequence, ions, and regulatory domains on spidroin LLPS. We find that salting out-effects drive LLPS via low-affinity stickers in the repeat domains. Interestingly, conditions that enable LLPS simultaneously cause dissociation of the dimeric C-terminal domain (CTD), priming it for aggregation. Since the CTD enhances LLPS of spidroins but is also required for their conversion into amyloid-like fibers, we expand the stickers and spacers-model of phase separation with the concept of folded domains as conditional stickers that represent regulatory units.


Assuntos
Fibroínas , Seda , Seda/química , Fibroínas/química , Proteínas de Artrópodes , Sequência de Aminoácidos
2.
J Am Chem Soc ; 145(19): 10659-10668, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37145883

RESUMO

Liquid-liquid phase separation (LLPS) of heterogeneous ribonucleoproteins (hnRNPs) drives the formation of membraneless organelles, but structural information about their assembled states is still lacking. Here, we address this challenge through a combination of protein engineering, native ion mobility mass spectrometry, and molecular dynamics simulations. We used an LLPS-compatible spider silk domain and pH changes to control the self-assembly of the hnRNPs FUS, TDP-43, and hCPEB3, which are implicated in neurodegeneration, cancer, and memory storage. By releasing the proteins inside the mass spectrometer from their native assemblies, we could monitor conformational changes associated with liquid-liquid phase separation. We find that FUS monomers undergo an unfolded-to-globular transition, whereas TDP-43 oligomerizes into partially disordered dimers and trimers. hCPEB3, on the other hand, remains fully disordered with a preference for fibrillar aggregation over LLPS. The divergent assembly mechanisms revealed by ion mobility mass spectrometry of soluble protein species that exist under LLPS conditions suggest structurally distinct complexes inside liquid droplets that may impact RNA processing and translation depending on biological context.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Proteínas de Ligação a DNA/química , Espectrometria de Massas
3.
Adv Funct Mater ; 32(23): 2200986, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-36505976

RESUMO

Spider silk is the toughest fiber found in nature, and bulk production of artificial spider silk that matches its mechanical properties remains elusive. Development of miniature spider silk proteins (mini-spidroins) has made large-scale fiber production economically feasible, but the fibers' mechanical properties are inferior to native silk. The spider silk fiber's tensile strength is conferred by poly-alanine stretches that are zipped together by tight side chain packing in ß-sheet crystals. Spidroins are secreted so they must be void of long stretches of hydrophobic residues, since such segments get inserted into the endoplasmic reticulum membrane. At the same time, hydrophobic residues have high ß-strand propensity and can mediate tight inter-ß-sheet interactions, features that are attractive for generation of strong artificial silks. Protein production in prokaryotes can circumvent biological laws that spiders, being eukaryotic organisms, must obey, and the authors thus design mini-spidroins that are predicted to more avidly form stronger ß-sheets than the wildtype protein. Biomimetic spinning of the engineered mini-spidroins indeed results in fibers with increased tensile strength and two fiber types display toughness equal to native dragline silks. Bioreactor expression and purification result in a protein yield of ≈9 g L-1 which is in line with requirements for economically feasible bulk scale production.

4.
FASEB J ; 35(11): e21896, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634154

RESUMO

Surgical intervention with the use of autografts is considered the gold standard to treat peripheral nerve injuries. However, a biomaterial that supports and guides nerve growth would be an attractive alternative to overcome problems with limited availability, morbidity at the site of harvest, and nerve mismatches related to autografts. Native spider silk is a promising material for construction of nerve guidance conduit (NGC), as it enables regeneration of cm-long nerve injuries in sheep, but regulatory requirements for medical devices demand synthetic materials. Here, we use a recombinant spider silk protein (NT2RepCT) and a functionalized variant carrying a peptide derived from vitronectin (VN-NT2RepCT) as substrates for nerve growth support and neurite extension, using a dorsal root ganglion cell line, ND7/23. Two-dimensional coatings were benchmarked against poly-d-lysine and recombinant laminins. Both spider silk coatings performed as the control substrates with regards to proliferation, survival, and neurite growth. Furthermore, NT2RepCT and VN-NT2RepCT spun into continuous fibers in a biomimetic spinning set-up support cell survival, neurite growth, and guidance to an even larger extent than native spider silk. Thus, artificial spider silk is a promising biomaterial for development of NGCs.


Assuntos
Proliferação de Células/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neuritos/metabolismo , Seda/farmacologia , Aranhas/metabolismo , Vitronectina/farmacologia , Animais , Autoenxertos , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Gânglios Espinais/citologia , Humanos , Laminina/farmacologia , Camundongos , Neuritos/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/cirurgia , Engenharia de Proteínas/métodos , Ratos , Proteínas Recombinantes/farmacologia , Seda/genética , Vitronectina/genética
5.
Molecules ; 25(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708777

RESUMO

Efficient production of artificial spider silk fibers with properties that match its natural counterpart has still not been achieved. Recently, a biomimetic process for spinning recombinant spider silk proteins (spidroins) was presented, in which important molecular mechanisms involved in native spider silk spinning were recapitulated. However, drawbacks of these fibers included inferior mechanical properties and problems with low resistance to aqueous environments. In this work, we show that ≥5 h incubation of the fibers, in a collection bath of 500 mM NaAc and 200 mM NaCl, at pH 5 results in fibers that do not dissolve in water or phosphate buffered saline, which implies that the fibers can be used for applications that involve wet/humid conditions. Furthermore, incubation in the collection bath improved the strain at break and was associated with increased ß-sheet content, but did not affect the fiber morphology. In summary, we present a simple way to improve artificial spider silk fiber strain at break and resistance to aqueous solvents.


Assuntos
Biomimética , Fibroínas/síntese química , Proteínas Recombinantes/química , Seda/química , Animais , Fibroínas/química , Teste de Materiais , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/genética , Solventes/química , Aranhas , Estresse Mecânico , Resistência à Tração , Água/química
6.
J Virol ; 88(14): 8129-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807727

RESUMO

Prion diseases are characterized by a conformational change in the normal host protein PrPC. While the majority of mature PrPC is tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, topological variants of this protein can arise during its biosynthesis. Here we have generated Drosophila transgenic for cytosolic ovine PrP in order to investigate its toxic potential in flies in the absence or presence of exogenous ovine prions. While cytosolic ovine PrP expressed in Drosophila was predominantly detergent insoluble and showed resistance to low concentrations of proteinase K, it was not overtly detrimental to the flies. However, Drosophila transgenic for cytosolic PrP expression exposed to classical or atypical scrapie prion inocula showed a faster decrease in locomotor activity than similar flies exposed to scrapie-free material. The susceptibility to classical scrapie inocula could be assessed in Drosophila transgenic for panneuronal expression of cytosolic PrP, whereas susceptibility to atypical scrapie required ubiquitous PrP expression. Significantly, the toxic phenotype induced by ovine scrapie in cytosolic PrP transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that while cytosolic PrP expression does not adversely affect Drosophila, this topological PrP variant can participate in the generation of transmissible scrapie-induced toxicity. These observations also show that PrP transgenic Drosophila are susceptible to classical and atypical scrapie prion strains and highlight the utility of this invertebrate host as a model of mammalian prion disease. Importance: During prion diseases, the host protein PrPC converts into an abnormal conformer, PrPSc, a process coupled to the generation of transmissible prions and neurotoxicity. While PrPC is principally a glycosylphosphatidylinositol-anchored membrane protein, the role of topological variants, such as cytosolic PrP, in prion-mediated toxicity and prion formation is undefined. Here we generated Drosophila transgenic for cytosolic PrP expression in order to investigate its toxic potential in the absence or presence of exogenous prions. Cytosolic ovine PrP expressed in Drosophila was not overtly detrimental to the flies. However, cytosolic PrP transgenic Drosophila exposed to ovine scrapie showed a toxic phenotype absent from similar flies exposed to scrapie-free material. Significantly, the scrapie-induced toxic phenotype in cytosolic transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that cytosolic PrP can participate in the generation of transmissible prion-induced toxicity and highlight the utility of Drosophila as a model of mammalian prion disease.


Assuntos
Príons/toxicidade , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila/fisiologia , Cabras , Doenças Priônicas/patologia , Príons/genética , Análise de Sobrevida
7.
Nat Commun ; 13(1): 4695, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970823

RESUMO

Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to ß-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density.


Assuntos
Fibroínas , Aranhas , Animais , Fibroínas/química , Hidrogéis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Seda/química , Aranhas/metabolismo
8.
ACS Biomater Sci Eng ; 7(2): 462-471, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33397078

RESUMO

Recombinant spider silk has emerged as a biomaterial that can circumvent problems associated with synthetic and naturally derived polymers, while still fulfilling the potential of the native material. The artificial spider silk protein NT2RepCT can be produced and spun into fibers without the use of harsh chemicals and here we evaluate key properties of NT2RepCT dope at native-like concentrations. We show that NT2RepCT recapitulates not only the overall secondary structure content of a native silk dope but also emulates its viscoelastic rheological properties. We propose that these properties are key to biomimetic spinning and that optimization of rheological properties could facilitate successful spinning of artificial dopes into fibers.


Assuntos
Biomimética , Seda , Estrutura Secundária de Proteína , Reologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA