Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(34): e2215095120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585460

RESUMO

Cancer cachexia, and its associated complications, represent a large and currently untreatable roadblock to effective cancer management. Many potential therapies have been proposed and tested-including appetite stimulants, targeted cytokine blockers, and nutritional supplementation-yet highly effective therapies are lacking. Innovative approaches to treating cancer cachexia are needed. Members of the Kruppel-like factor (KLF) family play wide-ranging and important roles in the development, maintenance, and metabolism of skeletal muscle. Within the KLF family, we identified KLF10 upregulation in a multitude of wasting contexts-including in pancreatic, lung, and colon cancer mouse models as well as in human patients. We subsequently interrogated loss-of-function of KLF10 as a potential strategy to mitigate cancer associated muscle wasting. In vivo studies leveraging orthotopic implantation of pancreas cancer cells into wild-type and KLF10 KO mice revealed significant preservation of lean mass and robust suppression of pro-atrophy muscle-specific ubiquitin ligases Trim63 and Fbxo32, as well as other factors implicated in atrophy, calcium signaling, and autophagy. Bioinformatics analyses identified Transforming growth factor beta (TGF-ß), a known inducer of KLF10 and cachexia promoting factor, as a key upstream regulator of KLF10. We provide direct in vivo evidence that KLF10 KO mice are resistant to the atrophic effects of TGF-ß. ChIP-based binding studies demonstrated direct binding to Trim63, a known wasting-associated atrogene. Taken together, we report a critical role for the TGF-ß/KLF10 axis in the etiology of pancreatic cancer-associated muscle wasting and highlight the utility of targeting KLF10 as a strategy to prevent muscle wasting and limit cancer-associated cachexia.


Assuntos
Neoplasias Pancreáticas , Fator de Crescimento Transformador beta , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Caquexia/genética , Atrofia Muscular/genética , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo
2.
Exp Cell Res ; 407(1): 112779, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428455

RESUMO

Skeletal muscle wasting drives negative clinical outcomes and is associated with a spectrum of pathologies including cancer. Cancer cachexia is a multi-factorial syndrome that encompasses skeletal muscle wasting and remains understudied, despite being a frequent and serious co-morbidity. Deviation from the homeostatic balance between breakdown and regeneration leads to muscle wasting disorders, such as cancer cachexia. Muscle stem cells (MuSCs) are the cellular compartment responsible for muscle regeneration, which makes MuSCs an intriguing target in the context of wasting muscle. Molecular studies investigating MuSCs and skeletal muscle wasting largely focus on transcriptional changes, but our group and others propose that metabolic changes are another layer of cellular regulation underlying MuSC dysfunction in cancer cachexia. In the present study, we combined gene expression and non-targeted metabolomic profiling of myoblasts exposed to wasting conditions (cancer cell conditioned media, CC-CM) to derive a more complete picture of the myoblast response to wasting factors. After mapping these features to annotated pathways, we found that more than half of the mapped pathways were amino acid-related, linking global amino acid metabolic disruption to conditioned media-induced myoblast defects. Notably, arginine metabolism was a highly enriched pathway in combined metabolomic and transcriptomic data. Arginine catabolism generates nitric oxide (NO), an important signaling molecule known to have negative effects on mature muscle. We hypothesize that tumor-derived disruptions in Nitric Oxide Synthase (NOS)2-regulated arginine catabolism impair differentiation of MuSCs. The work presented here further investigates the effect of NOS2 overactivity on myoblast proliferation and differentiation. We show that NOS2 inhibition is sufficient to rescue wasting phenotypes associated with inflammatory cytokines. Ultimately, this work provides new insights into MuSC biology and opens up potential therapeutic avenues for addressing disrupted MuSC dynamics in cancer cachexia.


Assuntos
Caquexia/metabolismo , Citocinas/metabolismo , Mioblastos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Caquexia/complicações , Caquexia/patologia , Diferenciação Celular/fisiologia , Humanos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Regeneração
3.
J Cachexia Sarcopenia Muscle ; 15(3): 975-988, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38632714

RESUMO

BACKGROUND: Patients with pancreatic ductal adenocarcinoma (PDAC) often suffer from cachexia, a wasting syndrome that significantly reduces both quality of life and survival. Although advanced cachexia is associated with inflammatory signalling and elevated muscle catabolism, the early events driving wasting are poorly defined. During periods of nutritional scarcity, the body relies on hepatic ketogenesis to generate ketone bodies, and lipid metabolism via ketogenesis is thought to protect muscle from catabolizing during nutritional scarcity. METHODS: We developed an orthotopic mouse model of early PDAC cachexia in 12-week-old C57BL/6J mice. Murine pancreatic cancer cells (KPC) were orthotopically implanted into the pancreas of wild-type, IL-6-/-, and hepatocyte STAT3-/- male and female mice. Mice were subject to fasting, 50% food restriction, ad libitum feeding or ketogenic diet interventions. We measured longitudinal body composition by EchoMRI, body mass and food intake. At the endpoint, we measured tissue mass, tissue gene expression by quantitative real-time polymerase chain reaction, whole-body calorimetry, circulating hormone levels, faecal protein and lipid content, hepatic lipid content and ketogenic response to medium-chain fatty acid bolus. We assessed muscle atrophy in vivo and C2C12 myotube atrophy in vitro. RESULTS: Pre-cachectic PDAC mice did not preserve gastrocnemius muscle mass during 3-day food restriction (-13.1 ± 7.7% relative to food-restricted sham, P = 0.0117) and displayed impaired fatty acid oxidation during fasting, resulting in a hypoketotic state (ketogenic response to octanoate bolus, -83.0 ± 17.3%, P = 0.0328; Hmgcs2 expression, -28.3 ± 7.6%, P = 0.0004). PDAC human patients display impaired fasting ketones (-46.9 ± 7.1%, P < 0.0001) and elevated circulating interleukin-6 (IL-6) (12.4 ± 16.5-fold increase, P = 0.0001). IL-6-/- PDAC mice had improved muscle mass (+35.0 ± 3.9%, P = 0.0031) and ketogenic response (+129.4 ± 44.4%, P = 0.0033) relative to wild-type PDAC mice. Hepatocyte-specific signal transducer and activator of transcription 3 (STAT3) deletion prevented muscle loss (+9.3 ± 4.0%, P = 0.009) and improved fasting ketone levels (+52.0 ± 43.3%, P = 0.018) in PDAC mice. Without affecting tumour growth, a carbohydrate-free diet improved tibialis anterior myofibre diameter (+16.5 ± 3.5%, P = 0.0089), circulating ketone bodies (+333.0 ± 117.6%, P < 0.0001) and Hmgcs2 expression (+106.5 ± 36.1%, P < 0.0001) in PDAC mice. Ketone supplementation protected muscle against PDAC-induced atrophy in vitro (+111.0 ± 17.6%, P < 0.0001 myofibre diameter). CONCLUSIONS: In early PDAC cachexia, muscle vulnerability to wasting is dependent on inflammation-driven metabolic reprogramming in the liver. PDAC suppresses lipid ß-oxidation and impairs ketogenesis in the liver, which is reversed in genetically modified mouse models deficient in IL-6/STAT3 signalling or through ketogenic diet supplementation. This work establishes a direct link between skeletal muscle homeostasis and hepatic metabolism. Dietary and anti-inflammatory interventions that restore ketogenesis may be a viable preventative approach for pre-cachectic patients with pancreatic cancer.


Assuntos
Caquexia , Fígado , Neoplasias Pancreáticas , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Caquexia/metabolismo , Caquexia/etiologia , Fator de Transcrição STAT3/metabolismo , Camundongos , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Fígado/metabolismo , Masculino , Feminino , Humanos , Modelos Animais de Doenças , Dieta Cetogênica , Linhagem Celular Tumoral , Corpos Cetônicos/metabolismo
4.
J Cachexia Sarcopenia Muscle ; 14(3): 1424-1440, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36883680

RESUMO

BACKGROUND: Over the past decade, advances in sepsis identification and management have resulted in decreased sepsis mortality. This increase in survivorship has highlighted a new clinical obstacle: chronic critical illness (CCI), for which there are no effective treatment options. Up to half of sepsis survivors suffer from CCI, which can include multi-organ dysfunction, chronic inflammation, muscle wasting, physical and mental disabilities, and enhanced frailty. These symptoms prevent survivors from returning to regular day-to-day activities and are directly associated with poor quality of life. METHODS: Mice were subjected to cecal ligation and puncture (CLP) with daily chronic stress (DCS) as an in vivo model to study sepsis late-effects/sequelae on skeletal muscle components. Longitudinal monitoring was performed via magnetic resonance imaging, skeletal muscle and/or muscle stem cell (MuSCs) assays (e.g., post-necropsy wet muscle weights, minimum Feret diameter measurements, in vitro MuSC proliferation and differentiation, number of regenerating myofibres and numbers of Pax7-positive nuclei per myofibre), post-sepsis whole muscle metabolomics and MuSC isolation and high-content transcriptional profiling. RESULTS: We report several findings supporting the hypothesis that MuSCs/muscle regeneration are critically involved in post-sepsis muscle recovery. First, we show that genetic ablation of muscle stem cells (MuSCs) impairs post-sepsis muscle recovery (maintenance of 5-8% average lean mass loss compared with controls). Second, we observe impaired MuSCs expansion capacity and morphological defects at 26 days post-sepsis compared with control MuSCs (P < 0.001). Third, when subjected to an experimental muscle injury, sepsis-recovered mice exhibited evidence of impaired muscle regeneration compared with non-septic mice receiving the same muscle injury (CLP/DCS injured mean minimum Feret is 92.1% of control injured, P < 0.01). Fourth, we performed a longitudinal RNA sequencing study on MuSCs isolated from post-sepsis mice and found clear transcriptional differences in all post-sepsis samples compared with controls. At Day 28, CLP/DCS mice satellite cells have multiple altered metabolic pathways, such as oxidative phosphorylation, mitochondrial dysfunction, sirtuin signalling and oestrogen receptor signalling, compared with controls (P < 0.001). CONCLUSIONS: Our data show that MuSCs and muscle regeneration are required for effective post-sepsis muscle recovery and that sepsis triggers morphological, functional, and transcriptional changes in MuSCs. Moving forward, we strive to leverage a more complete understanding of post-sepsis MuSC/regenerative defects to identify and test novel therapies that promote muscle recovery and improve quality of life in sepsis survivors.


Assuntos
Células Satélites de Músculo Esquelético , Sepse , Camundongos , Animais , Qualidade de Vida , Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/metabolismo , Diferenciação Celular , Sepse/metabolismo
5.
Methods Mol Biol ; 2429: 455-471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507181

RESUMO

Culturing primary muscle stem cells ex vivo is a useful method for studying this cell population in controlled environments. Primary muscle stem cells respond to external stimuli differently than immortalized myoblasts (C2C12 cells), making ex vivo culture of muscle stem cells an important tool in understanding cell responses to stimuli. Primary muscle stem cells cultured ex vivo retain a majority of the characteristics they possess in vivo such as the abilities to differentiate into multinucleated structures, and self-renew a stem cell-like population. In this chapter, we describe methods for isolating primary muscle stem cells, controlled differentiation into myotubes, and quantification of differentiation using IncuCyte live cell imaging and analysis software.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético , Diferenciação Celular , Células Cultivadas , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas , Mioblastos
6.
JCI Insight ; 7(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34874916

RESUMO

Approximately 80% of pancreatic cancer patients suffer from cachexia, and one-third die due to cachexia-related complications such as respiratory failure and cardiac arrest. Although there has been considerable research into cachexia mechanisms and interventions, there are, to date, no FDA-approved therapies. A major contributing factor for the lack of therapy options could be the failure of animal models to accurately recapitulate the human condition. In this study, we generated an aged model of pancreatic cancer cachexia to compare cachexia progression in young versus aged tumor-bearing mice. Comparative skeletal muscle transcriptome analyses identified 3-methyladenine (3-MA) as a candidate antiwasting compound. In vitro analyses confirmed antiwasting capacity, while in vivo analysis revealed potent antitumor effects. Transcriptome analyses of 3-MA-treated tumor cells implicated Perp as a 3-MA target gene. We subsequently (a) observed significantly higher expression of Perp in cancer cell lines compared with control cells, (b) noted a survival disadvantage associated with elevated Perp, and (c) found that 3-MA-associated Perp reduction inhibited tumor cell growth. Finally, we have provided in vivo evidence that survival benefits conferred by 3-MA administration are independent of its effect on tumor progression. Taken together, we report a mechanism linking 3-MA to Perp inhibition, and we further implicate Perp as a tumor-promoting factor in pancreatic cancer.


Assuntos
Adenina/análogos & derivados , Caquexia , Proteínas de Membrana , Músculo Esquelético , Neoplasias Pancreáticas , Adenina/metabolismo , Adenina/farmacologia , Fatores Etários , Animais , Autofagia/efeitos dos fármacos , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia
7.
Skelet Muscle ; 10(1): 6, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32151276

RESUMO

BACKGROUND: Cancer-associated muscle wasting (CAW), a symptom of cancer cachexia, is associated with approximately 20% of lung cancer deaths and remains poorly characterized on a mechanistic level. Current animal models for lung cancer-associated cachexia are limited in that they (1) primarily employ flank transplantation methods, (2) have short survival times not reflective of the patient condition, and (3) are typically performed in young mice not representative of mean patient age. This study investigates a new model for lung cancer-associated cachexia that can address these issues and also implicates muscle regeneration as a contributor to CAW. METHODS: We used tail vein injection as a method to introduce tumor cells that seed primarily in the lungs of mice. Body composition of tumor-bearing mice was longitudinally tracked using NMR-based, echo magnetic resonance imaging (echoMRI). These data were combined with histological and molecular assessments of skeletal muscle to provide a complete analysis of muscle wasting. RESULTS: In this new lung CAW model, we observed (1) progressive loss in whole body weight, (2) progressive loss of lean and fat mass, (3) a circulating cytokine/inflammatory profile similar to that seen in other models of CAW, (4) histological changes associated with muscle wasting, and (5) molecular changes in muscle that implicate suppression of muscle repair/regeneration. Finally, we show that survival can be extended without lessening CAW by titrating injected cell number. CONCLUSIONS: Overall, this study describes a new model of CAW that could be useful for further studies of lung cancer-associated wasting and accompanying changes in the regenerative capacity of muscle. Additionally, this model addresses many recent concerns with existing models such as immunocompetence, tumor location, and survival time.


Assuntos
Caquexia/patologia , Neoplasias Pulmonares/patologia , Músculo Esquelético/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Caquexia/etiologia , Linhagem Celular Tumoral , Neoplasias Pulmonares/complicações , Masculino , Camundongos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo
8.
JCSM Rapid Commun ; 3(2): 56-69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905522

RESUMO

Background: Muscle wasting is a debilitating co-morbidity affecting most advanced cancer patients. Alongside enhanced muscle catabolism, defects in muscle repair/regeneration contribute to cancer-associated wasting. Among the factors implicated in suppression of muscle regeneration are cytokines that interfere with myogenic signal transduction pathways. Less understood is how other cancer/wasting-associated cues, such as metabolites, contribute to muscle dysfunction. This study investigates how the metabolite succinate affects myogenesis and muscle regeneration. Methods: We leveraged an established ectopic metabolite treatment (cell permeable dimethyl-succinate) strategy to evaluate the ability of intracellular succinate elevation to 1) affect myoblast homeostasis (proliferation, apoptosis), 2) disrupt protein dynamics and induce wasting-associated atrophy, and 3) modulate in vitro myogenesis. In vivo succinate supplementation experiments (2% succinate, 1% sucrose vehicle) were used to corroborate and extend in vitro observations. Metabolic profiling and functional metabolic studies were then performed to investigate the impact of succinate elevation on mitochondria function. Results: We found that in vitro succinate supplementation elevated intracellular succinate about 2-fold, and did not have an impact on proliferation or apoptosis of C2C12 myoblasts. Elevated succinate had minor effects on protein homeostasis (~25% decrease in protein synthesis assessed by OPP staining), and no significant effect on myotube atrophy. Succinate elevation interfered with in vitro myoblast differentiation, characterized by significant decreases in late markers of myogenesis and fewer nuclei per myosin heavy chain positive structure (assessed by immunofluorescence staining). While mice orally administered succinate did not exhibit changes in overall body composition or whole muscle weights, these mice displayed smaller muscle myofiber diameters (~6% decrease in the mean of non-linear regression curves fit to the histograms of minimum feret diameter distribution), which was exacerbated when muscle regeneration was induced with barium chloride injury. Significant decreases in the mean of non-linear regression curves fit to the histograms of minimum feret diameter distributions were observed 7 days and 28 days post injury. Elevated numbers of myogenin positive cells (3-fold increase) supportive of the differentiation defects observed in vitro were observed 28 days post injury. Metabolic profiling and functional metabolic assessment of myoblasts revealed that succinate elevation caused both widespread metabolic changes and significantly lowered maximal cellular respiration (~35% decrease). Conclusions: This study broadens the repertoire of wasting-associated factors that can directly modulate muscle progenitor cell function and strengthens the hypothesis that metabolic derangements are significant contributors to impaired muscle regeneration, an important aspect of cancer-associated muscle wasting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA