Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Biol ; 20(9): e3001743, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36126044

RESUMO

The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.


Assuntos
Glicogênio Hepático , Microbiota , Animais , Vida Livre de Germes , Glucose , Camundongos , Obesidade/metabolismo
2.
Sensors (Basel) ; 24(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339736

RESUMO

Heat flux measurement shows potential for the early detection of infectious growth. Our research is motivated by the possibility of using heat flux sensors for the early detection of infection on aortic vascular grafts by measuring the onset of bacterial growth. Applying heat flux measurement as an infectious marker on implant surfaces is yet to be experimentally explored. We have previously shown the measurement of the exponential growth curve of a bacterial population in a thermally stabilized laboratory environment. In this work, we further explore the limits of the microcalorimetric measurements via heat flux sensors in a microfluidic chip in a thermally fluctuating environment.


Assuntos
Temperatura Alta , Microfluídica , Calorimetria , Próteses e Implantes , Diagnóstico Precoce
3.
Nature ; 544(7651): 498-502, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28405025

RESUMO

Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.


Assuntos
Afinidade de Anticorpos , Imunoglobulina A/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/imunologia , Animais , Aderência Bacteriana , Vacinas Bacterianas , Ceco/imunologia , Ceco/microbiologia , Contagem de Colônia Microbiana , Conjugação Genética , Feminino , Humanos , Masculino , Camundongos , Plasmídeos/genética , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Infecções por Salmonella/prevenção & controle , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade
4.
Immunology ; 159(1): 52-62, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31777063

RESUMO

Immunology research in the last 50 years has made huge progress in understanding the mechanisms of anti-bacterial defense of deep, normally sterile, tissues such as blood, spleen and peripheral lymph nodes. In the intestine, with its dense commensal microbiota, it seems rare that this knowledge can be simply translated. Here we put forward the idea that perhaps it is not always the theory of immunology that is lacking to explain mucosal immunity, but rather that we have overlooked crucial parts of the mucosal immunological language required for its translation: namely intestinal and bacterial physiology. We will try to explain this in the context of intestinal secretory antibodies (mainly secretory IgA), which have been described to prevent, to alter, to not affect, or to promote colonization of the intestine and gut-draining lymphoid tissues, and where effector mechanisms have remained elusive. In fact, these apparently contradictory outcomes can be generated by combining the basic premises of bacterial agglutination with an understanding of bacterial growth (i.e. secretory IgA-driven enchained growth), fluid handling and bacterial competition in the gut lumen.


Assuntos
Bactérias/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina A Secretora/metabolismo , Dinâmica Populacional , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 114(25): 6438-6443, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28588144

RESUMO

The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.


Assuntos
Bactérias/crescimento & desenvolvimento , Colo/microbiologia , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Fenômenos Fisiológicos Bacterianos , Fenômenos Biológicos , Humanos
6.
PLoS Genet ; 12(4): e1005974, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27093302

RESUMO

In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported.


Assuntos
Divisão Celular/genética , Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Divisão Celular/fisiologia , Escherichia coli/genética , Genes Reguladores , Glicogênio/genética , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 113(41): 11414-11419, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27681630

RESUMO

The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the "minigut." This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction-diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon.


Assuntos
Bactérias/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Peristaltismo , Reologia , Contagem de Colônia Microbiana , Difusão , Modelos Biológicos
8.
PLoS Biol ; 12(8): e1001928, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25136970

RESUMO

Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment.


Assuntos
Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Adaptação Fisiológica/efeitos dos fármacos , Genes Bacterianos , Mutação/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/fisiologia , Seleção Genética/efeitos dos fármacos , Virulência/efeitos dos fármacos , Virulência/genética
9.
Antimicrob Agents Chemother ; 58(8): 4573-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24867991

RESUMO

Combination therapy is rarely used to counter the evolution of resistance in bacterial infections. Expansion of the use of combination therapy requires knowledge of how drugs interact at inhibitory concentrations. More than 50 years ago, it was noted that, if bactericidal drugs are most potent with actively dividing cells, then the inhibition of growth induced by a bacteriostatic drug should result in an overall reduction of efficacy when the drug is used in combination with a bactericidal drug. Our goal here was to investigate this hypothesis systematically. We first constructed time-kill curves using five different antibiotics at clinically relevant concentrations, and we observed antagonism between bactericidal and bacteriostatic drugs. We extended our investigation by performing a screen of pairwise combinations of 21 different antibiotics at subinhibitory concentrations, and we found that strong antagonistic interactions were enriched significantly among combinations of bacteriostatic and bactericidal drugs. Finally, since our hypothesis relies on phenotypic effects produced by different drug classes, we recreated these experiments in a microfluidic device and performed time-lapse microscopy to directly observe and quantify the growth and division of individual cells with controlled antibiotic concentrations. While our single-cell observations supported the antagonism between bacteriostatic and bactericidal drugs, they revealed an unexpected variety of cellular responses to antagonistic drug combinations, suggesting that multiple mechanisms underlie the interactions.


Assuntos
Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Citostáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Citostáticos/antagonistas & inibidores , Antagonismo de Drogas , Escherichia coli/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Técnicas Analíticas Microfluídicas , Análise de Célula Única , Imagem com Lapso de Tempo
11.
PLoS Pathog ; 7(7): e1002143, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21829349

RESUMO

Virulence factors generally enhance a pathogen's fitness and thereby foster transmission. However, most studies of pathogen fitness have been performed by averaging the phenotypes over large populations. Here, we have analyzed the fitness costs of virulence factor expression by Salmonella enterica subspecies I serovar Typhimurium in simple culture experiments. The type III secretion system ttss-1, a cardinal virulence factor for eliciting Salmonella diarrhea, is expressed by just a fraction of the S. Typhimurium population, yielding a mixture of cells that either express ttss-1 (TTSS-1(+) phenotype) or not (TTSS-1(-) phenotype). Here, we studied in vitro the TTSS-1(+) phenotype at the single cell level using fluorescent protein reporters. The regulator hilA controlled the fraction of TTSS-1+ individuals and their ttss-1 expression level. Strikingly, cells of the TTSS-1(+) phenotype grew slower than cells of the TTSS-1(-) phenotype. The growth retardation was at least partially attributable to the expression of TTSS-1 effector and/or translocon proteins. In spite of this growth penalty, the TTSS-1(+) subpopulation increased from <10% to approx. 60% during the late logarithmic growth phase of an LB batch culture. This was attributable to an increasing initiation rate of ttss-1 expression, in response to environmental cues accumulating during this growth phase, as shown by experimental data and mathematical modeling. Finally, hilA and hilD mutants, which form only fast-growing TTSS-1(-) cells, outcompeted wild type S. Typhimurium in mixed cultures. Our data demonstrated that virulence factor expression imposes a growth penalty in a non-host environment. This raises important questions about compensating mechanisms during host infection which ensure successful propagation of the genotype.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium , Fatores de Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenótipo , Infecções por Salmonella/genética , Infecções por Salmonella/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
PLoS Comput Biol ; 8(8): e1002627, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916000

RESUMO

Most organisms live in ever-changing environments, and have to cope with a range of different conditions. Often, the set of biological traits that are needed to grow, reproduce, and survive varies between conditions. As a consequence, organisms have evolved sensory systems to detect environmental signals, and to modify the expression of biological traits in response. However, there are limits to the ability of such plastic responses to cope with changing environments. Sometimes, environmental shifts might occur suddenly, and without preceding signals, so that organisms might not have time to react. Other times, signals might be unreliable, causing organisms to prepare themselves for changes that then do not occur. Here, we focus on such unreliable signals that indicate the onset of adverse conditions. We use analytical and individual-based models to investigate the evolution of simple rules that organisms use to decide whether or not to switch to a protective state. We find evolutionary transitions towards organisms that use a combination of random switching and switching in response to the signal. We also observe that, in spatially heterogeneous environments, selection on the switching strategy depends on the composition of the population, and on population size. These results are in line with recent experiments that showed that many unicellular organisms can attain different phenotypic states in a probabilistic manner, and lead to testable predictions about how this could help organisms cope with unreliable signals.


Assuntos
Evolução Biológica , Estresse Fisiológico , Modelos Teóricos
13.
Microsyst Nanoeng ; 9: 56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180454

RESUMO

All biological processes use or produce heat. Traditional microcalorimeters have been utilized to study the metabolic heat output of living organisms and heat production of exothermic chemical processes. Current advances in microfabrication have made possible the miniaturization of commercial microcalorimeters, resulting in a few studies on the metabolic activity of cells at the microscale in microfluidic chips. Here we present a new, versatile, and robust microcalorimetric differential design based on the integration of heat flux sensors on top of microfluidic channels. We show the design, modeling, calibration, and experimental verification of this system by utilizing Escherichia coli growth and the exothermic base catalyzed hydrolysis of methyl paraben as use cases. The system consists of a Polydimethylsiloxane based flow-through microfluidic chip with two 46 µl chambers and two integrated heat flux sensors. The differential compensation of thermal power measurements allows for the measurement of bacterial growth with a limit of detection of 1707 W/m3, corresponding to 0.021OD (2 ∙ 107 bacteria). We also extracted the thermal power of a single Escherichia coli of between 1.3 and 4.5 pW, comparable to values measured by industrial microcalorimeters. Our system opens the possibility for expanding already existing microfluidic systems, such as drug testing lab-on-chip platforms, with measurements of metabolic changes of cell populations in form of heat output, without modifying the analyte and minimal interference with the microfluidic channel itself.

14.
Cell Rep Methods ; 3(8): 100539, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671025

RESUMO

The metabolic "handshake" between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the "volatilome" (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Espectrometria de Massas por Ionização por Electrospray , Metaboloma , Atmosfera , Mamíferos
15.
bioRxiv ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37503073

RESUMO

Secreted immunoglobulins, predominantly SIgA, influence the colonization and pathogenicity of mucosal bacteria. While part of this effect can be explained by SIgA-mediated bacterial aggregation, we have an incomplete picture of how SIgA binding influences cells independently of aggregation. Here we show that akin to microscale crosslinking of cells, SIgA targeting the Salmonella Typhimurium O-antigen extensively crosslinks the O-antigens on the surface of individual bacterial cells at the nanoscale. This crosslinking results in an essentially immobilized bacterial outer membrane. Membrane immobilization, combined with Bam-complex mediated outer membrane protein insertion results in biased inheritance of IgA-bound O-antigen, concentrating SIgA-bound O-antigen at the oldest poles during cell growth. By combining empirical measurements and simulations, we show that this SIgA-driven biased inheritance increases the rate at which phase-varied daughter cells become IgA-free: a process that can accelerate IgA escape via phase-variation of O-antigen structure. Our results show that O-antigen-crosslinking by SIgA impacts workings of the bacterial outer membrane, helping to mechanistically explain how SIgA may exert aggregation-independent effects on individual microbes colonizing the mucosae.

16.
Elife ; 122023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757366

RESUMO

Many microbiota-based therapeutics rely on our ability to introduce a microbe of choice into an already-colonized intestine. In this study, we used genetically barcoded Bacteroides thetaiotaomicron (B. theta) strains to quantify population bottlenecks experienced by a B. theta population during colonization of the mouse gut. As expected, this reveals an inverse relationship between microbiota complexity and the probability that an individual wildtype B. theta clone will colonize the gut. The polysaccharide capsule of B. theta is important for resistance against attacks from other bacteria, phage, and the host immune system, and correspondingly acapsular B. theta loses in competitive colonization against the wildtype strain. Surprisingly, the acapsular strain did not show a colonization defect in mice with a low-complexity microbiota, as we found that acapsular strains have an indistinguishable colonization probability to the wildtype strain on single-strain colonization. This discrepancy could be resolved by tracking in vivo growth dynamics of both strains: acapsular B.theta shows a longer lag phase in the gut lumen as well as a slightly slower net growth rate. Therefore, as long as there is no niche competitor for the acapsular strain, this has only a small influence on colonization probability. However, the presence of a strong niche competitor (i.e., wildtype B. theta, SPF microbiota) rapidly excludes the acapsular strain during competitive colonization. Correspondingly, the acapsular strain shows a similarly low colonization probability in the context of a co-colonization with the wildtype strain or a complete microbiota. In summary, neutral tagging and detailed analysis of bacterial growth kinetics can therefore quantify the mechanisms of colonization resistance in differently-colonized animals.


Assuntos
Bacteroides thetaiotaomicron , Microbiota , Animais , Camundongos , Polissacarídeos
17.
Swiss Med Wkly ; 151: w20487, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33945149

RESUMO

Relevant pandemic-spread scenario simulations can provide guiding principles for containment and mitigation policies. We devised a compartmental model to predict the effectiveness of different mitigation strategies with a main focus on mass testing. The model consists of a set of simple differential equations considering the population size, reported and unreported infections, reported and unreported recoveries, and the number of COVID-19-inflicted deaths. We assumed that COVID-19 survivors are immune (e.g., mutations are not considered) and that the virus is primarily passed on by asymptomatic and pre-symptomatic individuals. Moreover, the current version of the model does not account for age-dependent differences in the death rates, but considers higher mortality rates due to temporary shortage of intensive care units. The model parameters have been chosen in a plausible range based on information found in the literature, but it is easily adaptable, i.e., these values can be replaced by updated information any time. We compared infection rates, the total number of people getting infected and the number of deaths in different scenarios. Social distancing or mass testing can contain or drastically reduce the infections and the predicted number of deaths when compared with a situation without mitigation. We found that mass testing alone and subsequent isolation of detected cases can be an effective mitigation strategy, alone and in combination with social distancing. It is of high practical relevance that a relationship between testing frequency and the effective reproduction number of the virus can be provided. However, unless one assumes that the virus can be globally defeated by reducing the number of infected persons to zero, testing must be upheld, albeit at reduced intensity, to prevent subsequent waves of infection. The model suggests that testing strategies can be equally effective as social distancing, though at much lower economic costs. We discuss how our mathematical model may help to devise an optimal mix of mitigation strategies against the COVID-19 pandemic. Moreover, we quantify the theoretical limit of contact tracing and by how much the effect of testing is enhanced, if applied to sub-populations with increased exposure risk or prevalence.


Assuntos
COVID-19/prevenção & controle , Modelos Teóricos , Pandemias/prevenção & controle , Infecções Assintomáticas , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Humanos , Programas de Rastreamento , Distanciamento Físico
18.
PLoS One ; 16(11): e0259018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847176

RESUMO

A variety of mitigation strategies have been employed against the Covid-19 pandemic. Social distancing is still one of the main methods to reduce spread, but it entails a high toll on personal freedom and economic life. Alternative mitigation strategies that do not come with the same problems but are effective at preventing disease spread are therefore needed. Repetitive mass-testing using PCR assays for viral RNA has been suggested, but as a stand-alone strategy this would be prohibitively resource intensive. Here, we suggest a strategy that aims at targeting the limited resources available for viral RNA testing to subgroups that are more likely than the average population to yield a positive test result. Importantly, these pre-selected subgroups include symptom-free people. By testing everyone in these subgroups, in addition to symptomatic cases, large fractions of pre- and asymptomatic people can be identified, which is only possible by testing-based mitigation. We call this strategy smart testing (ST). In principle, pre-selected subgroups can be found in different ways, but for the purpose of this study we analyze a pre-selection procedure based on cheap and fast virus antigen tests. We quantify the potential reduction of the epidemic reproduction number by such a two-stage ST strategy. In addition to a scenario where such a strategy is available to the whole population, we analyze local applications, e.g. in a country, company, or school, where the tested subgroups are also in exchange with the untested population. Our results suggest that a two-stage ST strategy can be effective to curb pandemic spread, at costs that are clearly outweighed by the economic benefit. It is technically and logistically feasible to employ such a strategy, and our model predicts that it is even effective when applied only within local groups. We therefore recommend adding two-stage ST to the portfolio of available mitigation strategies, which allow easing social distancing measures without compromising public health.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , COVID-19/prevenção & controle , RNA Viral/análise , Número Básico de Reprodução , COVID-19/virologia , Teste Sorológico para COVID-19 , Modelos Epidemiológicos , Humanos , Programas de Rastreamento , Terminologia como Assunto
19.
Nat Microbiol ; 6(7): 830-841, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34045711

RESUMO

The ability of gut bacterial pathogens to escape immunity by antigenic variation-particularly via changes to surface-exposed antigens-is a major barrier to immune clearance1. However, not all variants are equally fit in all environments2,3. It should therefore be possible to exploit such immune escape mechanisms to direct an evolutionary trade-off. Here, we demonstrate this phenomenon using Salmonella enterica subspecies enterica serovar Typhimurium (S.Tm). A dominant surface antigen of S.Tm is its O-antigen: a long, repetitive glycan that can be rapidly varied by mutations in biosynthetic pathways or by phase variation4,5. We quantified the selective advantage of O-antigen variants in the presence and absence of O-antigen-specific immunoglobulin A and identified a set of evolutionary trajectories allowing immune escape without an associated fitness cost in naive mice. Through the use of rationally designed oral vaccines, we induced immunoglobulin A responses blocking all of these trajectories. This selected for Salmonella mutants carrying deletions of the O-antigen polymerase gene wzyB. Due to their short O-antigen, these evolved mutants were more susceptible to environmental stressors (detergents or complement) and predation (bacteriophages) and were impaired in gut colonization and virulence in mice. Therefore, a rationally induced cocktail of intestinal antibodies can direct an evolutionary trade-off in S.Tm. This lays the foundations for the exploration of mucosal vaccines capable of setting evolutionary traps as a prophylactic strategy.


Assuntos
Imunoglobulina A/imunologia , Intestinos/imunologia , Infecções por Salmonella/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/imunologia , Variação Antigênica , Proteínas de Bactérias/genética , Evolução Molecular , Aptidão Genética , Hexosiltransferases/genética , Evasão da Resposta Imune , Imunidade nas Mucosas , Intestinos/microbiologia , Camundongos , Mutação , Antígenos O/genética , Antígenos O/imunologia , Infecções por Salmonella/microbiologia , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Virulência
20.
Science ; 366(6467): 881-886, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727837

RESUMO

Myocarditis can develop into inflammatory cardiomyopathy through chronic stimulation of myosin heavy chain 6-specific T helper (TH)1 and TH17 cells. However, mechanisms governing the cardiotoxicity programming of heart-specific T cells have remained elusive. Using a mouse model of spontaneous autoimmune myocarditis, we show that progression of myocarditis to lethal heart disease depends on cardiac myosin-specific TH17 cells imprinted in the intestine by a commensal Bacteroides species peptide mimic. Both the successful prevention of lethal disease in mice by antibiotic therapy and the significantly elevated Bacteroides-specific CD4+ T cell and B cell responses observed in human myocarditis patients suggest that mimic peptides from commensal bacteria can promote inflammatory cardiomyopathy in genetically susceptible individuals. The ability to restrain cardiotoxic T cells through manipulation of the microbiome thereby transforms inflammatory cardiomyopathy into a targetable disease.


Assuntos
Doenças Autoimunes/complicações , Bacteroides/imunologia , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/microbiologia , Microbioma Gastrointestinal/imunologia , Miocardite/complicações , Peptídeos/imunologia , beta-Galactosidase/imunologia , Animais , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Humanos , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Miocardite/imunologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA