Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 486: 116917, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555004

RESUMO

Indole-3-acetic acid (IAA) is the most widely utilized plant growth regulator. Despite its extensive usage, IAA is often overlooked as an environmental pollutant. Due to its protein-binding nature, it also functions as a uremic toxin, contributing to its association with chronic kidney disease (CKD). While in vitro and epidemiological research have demonstrated this association, the precise impact of IAA on cardiovascular disease in animal models is unknown. The main objective of this study is to conduct a mechanistic analysis of the cardiotoxic effects caused by IAA using male Wistar albino rats as the experimental model. Three different concentrations of IAA (125, 250, 500 mg/kg) were administered for 28 days. The circulating IAA concentration mimicked previously observed levels in CKD patients. The administration of IAA led to a notable augmentation in heart size and heart-to-body weight ratio, indicating cardiac hypertrophy. Echocardiographic assessments supported these observations, revealing myocardial thickening. Biochemical and gene expression analyses further corroborated the cardiotoxic effects of IAA. Dyslipidemia, increased serum c-Troponin-I levels, decreased SOD and CAT levels, and elevated lipid peroxidation in cardiac tissue were identified. Moreover, increased expression of cardiac inflammatory biomarkers, including ANP, BNP, ß-MHC, Col-III, TNF-α, and NF-κB, was also found in the IAA-treated animals. Histopathological analysis confirmed the cardiotoxic nature of IAA, providing additional evidence of its adverse effects on cardiovascular health. These results offer insights into the potential negative impact of IAA on cardiovascular function, and elucidating the underlying mechanisms of its cardiotoxicity.


Assuntos
Cardiomegalia , Ácidos Indolacéticos , Ratos Wistar , Animais , Masculino , Ratos , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Estresse Oxidativo/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Biomarcadores/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Cardiotoxicidade
2.
J Biochem Mol Toxicol ; 38(1): e23520, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37632306

RESUMO

Butylparaben (BP), a common chemical preservative in cosmetic and pharmaceutical products, has been known to induce oxidative stress and disrupt endocrine function in humans. In contrast, morin, a flavonoid derived from the Moraceae family, exhibits diverse pharmacological properties, including anti-inflammatory and antioxidant. Despite this, the protective role of morin against oxidative stress-induced damage in pancreatic islets remains unclear. Therefore, in this study, we aimed to investigate the potential protective mechanism of morin against oxidative stress-induced damage caused by BP in zebrafish larvae. To achieve this, we exposed the zebrafish larvae to butylparaben (2.5 mg/L) for 5 days, leading to increased oxidative stress and apoptosis in ß-cells. However, our compelling findings revealed that pretreatment with various concentrations of morin effectively reduced mortality and mitigated apoptosis and lipid peroxidation in ß-cells induced by BP exposure. In addition, zebrafish larvae exposed to BP for 5 days exhibited evident ß-cell damage. However, the pretreatment with morin showed promising effects by promoting ß-cell proliferation and lowering glucose levels. Furthermore, gene expression studies indicated that morin pretreatment normalized PEPCK expression while increasing insulin expression in BP-exposed larvae. In conclusion, our findings highlight the potential of morin as a protective agent against BP-induced ß-cell damage in zebrafish larvae. The observed improvements in oxidative stress, apoptosis, and gene expression patterns support the notion that morin could be further explored as a therapeutic candidate to counteract the detrimental effects of BP exposure on pancreatic ß-cells.


Assuntos
Flavonas , Insulina , Parabenos , Peixe-Zebra , Animais , Humanos , Larva , Antioxidantes/farmacologia , Estresse Oxidativo , Flavonoides/farmacologia , Flavonoides/uso terapêutico
3.
Drug Chem Toxicol ; : 1-16, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910278

RESUMO

The growing concern about pollution and toxicity in aquatic as well as terrestrial organisms is predominantly caused due to waterborne exposure and poses a risk to environmental systems and human health. This study addresses the co-toxic effects of cadmium (Cd) and ketoprofen (KPF), representing heavy metal and pharmaceutical discharge pollutants, respectively, in aquatic ecosystems. A 96-h acute toxicity assessment was conducted using zebrafish embryos. The results indicated that high dosages of KPF (10, 15, and 100 µg/mL) and Cd (10 and 15 µg/mL) reduced survivability and caused concentration-dependent deformities such as scoliosis and yolk sac edema. These findings highlight the potential defects in development and metabolism, as evidenced by hemolysis tests demonstrating dose-dependent effects on blood cell integrity. Furthermore, this study employs adult zebrafish for a 42-day chronic exposure to Cd and KPF (10 and 100 µg/L) alone or combined (10 + 10 and 100 + 100 µg/L) to assess organ-specific Cd and KPF accumulation in tissue samples. Organ-specific accumulation patterns underscore complex interactions impacting respiratory, metabolic, and detoxification functions. Prolonged exposure induces reactive oxygen species formation, compromising antioxidant defense systems. Histological examinations reveal structural changes in gills, gastrointestinal, kidney, and liver tissues, suggesting impairments in respiratory, osmoregulatory, nutritional, and immune functions. This study emphasizes the importance of conducting extensive research on co-toxic effects to assist with environmental risk assessments and safeguard human health and aquatic ecosystems.

4.
Fish Physiol Biochem ; 50(4): 1811-1829, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38970761

RESUMO

Environmental pollution, particularly from textile industry effluents, raises concerns globally. The aim of this study is to investigate the hepatotoxicity of Sudan Black B (SBB), a commonly used textile azo dye, on embryonic zebrafish. SBB exposure led to concentration-dependent mortality, reaching 100% at 0.8 mM, accompanied by growth retardation and diverse malformations in zebrafish. Biochemical marker analysis indicated adaptive responses to SBB, including increased SOD, CAT, NO, and LDH, alongside decreased GSH levels. Liver morphology analysis unveiled significant alterations, impacting metabolism and detoxification. Also, glucose level was declined and lipid level elevated in SBB-exposed in vivo zebrafish. Inflammatory gene expressions (TNF-α, IL-10, and INOS) showcased a complex regulatory interplay, suggesting an organismal attempt to counteract pro-inflammatory states during SBB exposure. The increased apoptosis revealed a robust hepatic cellular response due to SBB, aligning with observed liver tissue damage and inflammatory events. This multidimensional study highlights the intricate web of responses due to SBB exposure, which is emphasizing the need for comprehensive understanding and targeted mitigation strategies. The findings bear the implications for both aquatic ecosystems and potentially parallels to human health, underscoring the imperative for sustained research in this critical domain.


Assuntos
Compostos Azo , Fígado , Poluentes Químicos da Água , Peixe-Zebra , Animais , Compostos Azo/toxicidade , Poluentes Químicos da Água/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Larva/efeitos dos fármacos , Corantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Naftalenos
5.
Microb Pathog ; 184: 106387, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821050

RESUMO

Bacteria communicate with each other through contact-dependent and contact-independent mechanisms. While certain contact-dependent mechanisms, such as Type IV and Type VI, have received considerable attention, nanotubes-mediated communication among gut bacteria remains largely unknown. The purpose of this study is to demonstrate the presence of nanotube production in both gut commensal and gut pathogenic bacteria. And also aims to show how Enterococcus faecalis utilizes nanotubes to combat Salmonella ser. Typhi (S. Typhi), a pathogen in the gut. The research findings suggest that the formation of nanotubes is an inherent trait observed in both Gram-positive and Gram-negative bacteria. Interestingly, bacteria generate nanotubes in dynamic environments, biofilms, and even within the gut of zebrafish. These nanotubes develops over time in accordance with the duration of incubation. Furthermore, E. faecalis effectively combats S. Typhi through mechanisms that depend on physical contact rather than indirect methods. Notably, E. faecalis protects zebrafish larvae from S. Typhi infections by reducing reactive oxygen species and cell death, and concurrently boosting the production of antioxidant enzymes. It is hypothesized that E. faecalis might eliminate S. Typhi by transferring toxic metabolites into the pathogen via nanotubes. Gene expression analysis highlights that proinflammatory markers such as TNF-α, IL-1ß, and IL-6 are elevated in Salmonella-infected larvae. However, co-treatment with E. faecalis counters this effect. Findings of this study underscores the significance of nanotubes as a vital machinery for bacterial communication and distribution of virulence factors. Exploring nanotubes-mediated communication at a molecular level could pave the way for innovative therapeutic interventions.


Assuntos
Enterococcus faecalis , Peixe-Zebra , Animais , Bactérias , Enterococcus faecalis/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Salmonella typhi
6.
Microb Pathog ; 180: 106123, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088400

RESUMO

Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1ß, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA.


Assuntos
Infecções por Pseudomonas , Fatores de Virulência , Animais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Pseudomonas aeruginosa , Luteolina/farmacologia , Peixe-Zebra , Percepção de Quorum , Inflamação , Superóxido Dismutase/metabolismo , Antibacterianos/metabolismo , Biofilmes , Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia
7.
Mol Biol Rep ; 51(1): 27, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133875

RESUMO

BACKGROUND: Polyethylene terephthalate (PET), a commonly used polymer in various food and plastic bag containers, has raised significant concerns regarding its environmental and human health risks. Despite its prevalent use, the impact of PET exposure on aquatic environments and its potential to induce neurotoxic conditions in species remain poorly understood. Furthermore, the mechanisms underlying amelioration through natural product intervention are not well-explored. In light of these gaps, our study aimed to elucidate the neurotoxic effects of PET in zebrafish through waterborne exposure, and to mitigate its neurological impact using luteolin-graphene oxide nanoparticles. METHODS AND RESULTS: Our investigation revealed that exposure to PET in water triggered adverse effects in zebrafish larvae, particularly in the head region. We observed heightened oxidative stress, lipid peroxidation, and cell death, accompanied by impaired antioxidant defense enzymes. Furthermore, abnormal levels of acetylcholine esterase and nitric oxide in the zebrafish brain indicated cognitive impairment. To address these issues, we explored the potential neuroprotective effects of luteolin-graphene oxide nanoparticles. These nanoparticles demonstrated efficacy in localizing within the zebrafish brain, enhancing their therapeutic impact against PET exposure. Treatment with luteolin-graphene oxide nanoparticles not only mitigated PET-induced neurological alterations but also exhibited a neuroprotective effect. This was evidenced by the regulation of pro-inflammatory cytokine gene expression in the zebrafish brain. Additionally, normalization of locomotory behavior in PET-exposed zebrafish following nanoparticle treatment underscored the potential effectiveness of luteolin-graphene oxide nanoparticles as a treatment against PET-induced neurotoxicity. CONCLUSIONS: In summary, our study emphasizes the urgent need to investigate the environmental and health risks associated with PET. We demonstrate the potential of luteolin-graphene oxide nanoparticles as an effective intervention against PET-induced neurotoxicity in zebrafish.


Assuntos
Nanopartículas , Peixe-Zebra , Animais , Humanos , Luteolina/farmacologia , Polietilenotereftalatos/farmacologia , Nanopartículas/toxicidade , Estresse Oxidativo , Encéfalo
8.
Mol Biol Rep ; 50(9): 7357-7369, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450077

RESUMO

BACKGROUND: Natural products are considered effective sources for new therapeutic research and development. The numerous therapeutic properties of natural substances in traditional medicine compel us to investigate the anti-cancer properties of Nimbin (N1) and its semi-natural analog Nimbic acid (N3) from Azadirachta indica against MG-63 Osteosarcoma cells. MATERIALS AND METHODS: The therapeutic efficacy of N1 and N3 were screened for their toxicity and cytotoxic activity using L6 myotubes, zebrafish larvae and MG-63 osteosarcoma cells. The mitochondrial membrane potential was evaluated using the Rhodamine 123 stain. Further, the nuclear and cellular damage was distinguished using Hoechst and Acridine orange/EtBr stain. The mechanism of cell cycle progression, cellular proliferation and caspase cascade activation was screened using scratch assay, flow cytometry, and mRNA expression analysis. RESULTS: The Nimbin and analogue N3 were found to be non-toxic to normal L6 cells (Rat skeletal muscles), exhibited cytotoxicity in MG-63 cells, and were exposed to be an active inhibitor of cell proliferation and migration. Analogs N1 and N3 induced negative mitochondrial membrane potential when stained with Rhodamine 123, leading to nuclear damage and apoptosis stimulation using AO/EtBr and Hoechst. Further, N1 and N3 induced cell cycle arrest in G0/G1 phase in flow cytometry using PI staining and induced apoptosis by activating the caspase cascade and upregulated Caspase 3 and caspase 9. CONCLUSION: The study demonstrated cytotoxic activity against MG-63 osteosarcoma cells while being non-toxic to normal L6 cells. These compounds inhibited cell proliferation and migration, induced mitochondrial dysfunction, nuclear damage, and apoptosis stimulation. Furthermore, N1 and N3 caused cell cycle arrest and activated the caspase cascade, ultimately leading to apoptosis. These findings indicate that N1 and N3 hold promise as potential candidates used alone or combined with existing drugs for further investigation and development as anti-cancer agents.


Assuntos
Antineoplásicos , Azadirachta , Osteossarcoma , Animais , Ratos , Caspases , Rodamina 123/farmacologia , Rodamina 123/uso terapêutico , Peixe-Zebra , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Antineoplásicos/farmacologia , Osteossarcoma/tratamento farmacológico , Sementes
9.
J Toxicol Environ Health A ; 86(19): 720-734, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37609830

RESUMO

Ultraviolet B wavelength ray radiation (UVB) is an environmental stressor with detrimental effects to the aquatic and human systems but also enhances adverse effects when combined with several other environmental factors such as temperature and pollution. UV rays induce cellular oxidative damage and impair motility. This study aimed to examine the photo-protective activity of flavonoid luteolin against UV-B irradiation-induced oxidative stress and cellular damage using zebrafish. An in-vivo photoaging model was established using UV-B irradiation in zebrafish larvae exposed to 100 mJ/cm2. Data demonstrated that UV-B irradiation of swimming water enhanced production of ROS and superoxide anions as well as depleted total glutathione levels in zebrafish larvae. UV-B irradiation also triggered cellular damage and membrane rupture in zebra fish. Further, 100 mJ/cm2 of UV-B radiation exposure to adult-wild type zebrafish co-exposed with intraperitoneally (ip) injected luteolin upregulated the local neuroendocrine axes by activating vascular endothelial growth factor (VEGF) and elevating levels of pro-inflammatory cytokines IL-1ß and TNF-α. Histologically, UV-B irradiation induced skin lesions and locomotory defects with clumping and degeneration of brain glial cells. However, luteolin effectively inhibited the excess production of reactive oxygen species (ROS) and decreased superoxide anion levels induced by UV-B irradiation. Luteolin restored the depleted glutathione levels. In addition, luteolin blocked apoptosis and lipidperoxidation. Luteolin protected adult zebrafish by downregulating the pro-inflammatory cytokine protein expression levels and diminishing VEGF activation. Luteolin also alleviated locomotory defects by inhibiting activation of microglia and inflammatory responses by preventing accumulation of glial cells and vacuolation. Data demonstrate that luteolin may protect zebrafish from UV-B-induced photodamage through DNA-protective, antioxidant and anti-inflammatory responses.


Assuntos
Luteolina , Raios Ultravioleta , Adulto , Animais , Humanos , Raios Ultravioleta/efeitos adversos , Luteolina/farmacologia , Espécies Reativas de Oxigênio , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Citocinas , Glutationa , Larva
10.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764521

RESUMO

Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.


Assuntos
Aphanomyces , Animais , Aphanomyces/genética , Peixe-Zebra , Fungos , Peptídeos , Fatores de Virulência
11.
Molecules ; 28(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513223

RESUMO

Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.


Assuntos
Retinopatia Diabética , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Retinopatia Diabética/metabolismo , Estresse Oxidativo , Glucose/farmacologia
12.
Medicina (Kaunas) ; 59(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38138165

RESUMO

Background and Objectives: Cancer is the second-most-important deadly disease in the world, leading to severe socioeconomic consequences and posing a public threat. Consequently, breast and colorectal cancers are significant cancer types that affect women and men more commonly, respectively. Treatment failure or recurrent diseases frequently occur due to resistance, in addition to the side effects of the currently available anticancer agents. Therefore, in this study, herbal melanin anticancer activity was investigated against human breast adenocarcinoma (MDA-MB-231) and human colorectal (HCT 116) cell proliferation and the expression of downregulated anti-apoptotic proteins and upregulated pro-apoptotic p53. Materials and Methods: MDA-MB-231 and HCT 116 cells were monitored for their real-time proliferation properties using Xcelligence. Herbal melanin of various concentrations significantly inhibited MDA-MB-231 and HCT 116 cell proliferation. Then, the expression of proapoptotic and anti-apoptotic proteins such as p53, Bcl-2 and Bcl-xl was studied using Western blotting. Results: The Bcl-2 and Bcl-xl expressions were downregulated, while the p53 expression was upregulated after treatment with herbal melanin. Similarly, the expression of apoptotic proteins such as Bcl-2, Bcl-xl, XIAP, Survivin, Bid, Bax, p53, Cytochrome C, PARP genes and mRNA was studied after herbal melanin treatment using real-time PCR, which revealed the downregulation of Bcl-2, Bcl-xl, XIAP and Survivin and the upregulation of Bid, Bax, p53, Cytochrome C and PARP apoptotic protein expression. Also, caspase 3 and 9 expressions were monitored after the treatment with herbal melanin, which revealed the upregulation of both the MDA-MB-231 and HCT 116 cell types. Conclusions: Overall, herbal melanin can be used as an alternative anticancer agent against the MDA-MB-231 and HCT 116 cell types.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/farmacologia , Proteínas Reguladoras de Apoptose/uso terapêutico , Células HCT116 , Proteína Supressora de Tumor p53/genética , Survivina/metabolismo , Survivina/farmacologia , Survivina/uso terapêutico , Melaninas/metabolismo , Melaninas/farmacologia , Melaninas/uso terapêutico , Apoptose , Proteína X Associada a bcl-2/genética , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , Antineoplásicos/uso terapêutico , Neoplasias da Mama/genética , Linhagem Celular Tumoral
13.
Curr Issues Mol Biol ; 44(2): 731-749, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723336

RESUMO

Breast milk is the combination of bioactive compounds and microflora that promote newborn's proper growth, gut flora, and immunity. Thus, it is always considered the perfect food for newborns. Amongst their bioactives, probiotic communities-especially lactic acid bacteria (LAB)-are characterized from breast milk over the first month of parturition. In this study, seven LAB were characterized phenotypically and genotypically as Levilactobacillus brevis BDUMBT08 (MT673657), L. gastricus BDUMBT09 (MT774596), L. paracasei BDUMBT10 (MT775430), L. brevis BDUMBT11 (MW785062), L. casei BDUMBT12 (MW785063), L. casei BDUMBT13 (MW785178), and Brevibacillus brevis M2403 (MK371781) from human breast milk. Their tolerance to lysozyme, acid, bile, gastric juice, pancreatic juice, and NaCl and potential for mucoadhesion, auto-aggregation, and co-aggregation with pathogens are of great prominence in forecasting their gut colonizing ability. They proved their safety aspects as they were negative for virulence determinants such as hemolysis and biofilm production. Antibiogram of LAB showed their sensitivity to more than 90% of the antibiotics tested. Amongst seven LAB, three isolates (L. brevis BDUMBT08 and BDUMBT11, and L. gatricus BDUMBT09) proved their bacteriocin producing propensity. Although the seven LAB isolates differed in their behavior, their substantial probiotic properties with safety could be taken as promising probiotics for further studies to prove their in vivo effects, such as health benefits, in humans.

14.
Arch Microbiol ; 204(4): 218, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333982

RESUMO

The present work was designed to isolate and characterise the actinobacteria in the Polar Front region of the Southern Ocean waters and species of Nocardiopsis and Streptomyces were identified. Among those, the psychrophilic actinobacterium, Nocardiopsis dassonvillei PSY13 was found to have good cellulolytic activity and it was further studied for the production and characterisation of cold-active cellulase enzyme. The latter was found to have a specific activity of 6.36 U/mg and a molar mass of 48 kDa with a 22.9-fold purification and 5% recovery at an optimum pH of 7.5 and a temperature of 10 °C. Given the importance of psychrophilic actinobacteria, N. dassonvillei PSY13 can be further exploited for its benefits, meaning that the Southern Ocean harbours biotechnologically important microorganisms that can be further explored for versatile biotechnological and industrial applications.


Assuntos
Celulase , Celulose , Temperatura Baixa , Hidrólise , Nocardiopsis
15.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431893

RESUMO

The present study aimed to analyze the in vitro antibacterial, antioxidant, larvicidal and cytotoxicity properties of green synthesized silver nanoparticles (Ag NPs) using aqueous extracts from fruits of Lagerstroemia speciosa and flowers of Couropita guinensis. Synthesized Ag NPs were characterized using UV-DRS, FTIR, XRD, DLS, and High-Resolution SEM and TEM analyses. Absorption wavelength was observed at 386 nm by UV-DRS analysis and energy band gap was calculated as 3.24 eV. FTIR analysis showed the existence of various functional groups in the aqueous extract and in the NPs. DLS analysis showed the stability and particle size of the synthesized Ag NPs. SEM analysis revealed that Ag NPs are in a face centered cubic symmetry and spherical shape with a size of 23.9 nm. TEM analysis showed particle size as 29.90 nm. Ag NPs showed antibacterial activity against both Gram-positive and Gram-negative bacteria. DPPH scavenging trait of Ag NPs was ranging from 20.0 ± 0.2% to 62.4 ± 0.3% and observed significant larvicidal activity (LC50 at 0.742 ppm and LC90 at 6.061 ppm) against Culex quinquefasciatus. In vitro cytotoxicity activity of Ag NPs was also tested against human breast cancer (MCF-7) and fibroblast cells (L-929) and found that cells viabilities are ranging (500 to 25 µg/mL) from 52.5 ± 0.4 to 94.0 ± 0.7% and 53.6 ± 0.5 to 90.1 ± 0.8%, respectively. The synthesized Ag NPs have the potential to be used in the various biomedical applications.


Assuntos
Lagerstroemia , Nanopartículas Metálicas , Humanos , Prata/química , Antioxidantes/farmacologia , Antioxidantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Frutas , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Flores
16.
Microb Pathog ; 143: 104129, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32169491

RESUMO

Dental caries is a common cause for tooth loss and Streptococcus mutans is identified as the etiologic pathogen. This study evaluates the inhibitory potential of Epigallocatechin gallate (EGCG) on S.mutans glucansucrase enzyme and its biofilm. Glucansucrase binding and the inhibitory potential of EGCG was validated using AutoDock tool and enzyme inhibitory assay. Biofilm inhibitory potential was also confirmed using Scanning Electron Microscopic (SEM) analysis in human tooth samples. Molecular docking revealed that EGCG interacted with GLU 515 and TRP 517 amino acids and binds to glucansucrase. SEM analysis revealed inhibition of S.mutans biofilm by various concentrations of EGCG on surfaces of tooth samples. Bioinformatics and biological assays confirmed that EGCG potentially binds to the S. mutans glucansucrase and inhibits its enzymatic activity. Enzymatic inhibition of glucansucrase attenuated biofilm formation potential of S. mutans on tooth surface. Thus, we conclude that EGCG inhibitory potential of S. mutans biofilm on the tooth surface is a novel approach in prevention of dental caries.


Assuntos
Biofilmes/efeitos dos fármacos , Catequina/análogos & derivados , Cárie Dentária/prevenção & controle , Streptococcus mutans/efeitos dos fármacos , Catequina/farmacologia , Catequina/uso terapêutico , Cárie Dentária/microbiologia , Humanos , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Streptococcus mutans/ultraestrutura , Dente/microbiologia
17.
Pestic Biochem Physiol ; 168: 104640, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711773

RESUMO

In the recent past, many agrochemicals have been used to control pests, but many of these fail due to the development of resistance. Many researchers, therefore, concentrate on developing new pesticide formulations from natural resources (plants/microorganism). In the present study, different extracts from Catharanthus roseus (Madagascar periwinkle) was evaluated for their ovicidal and oviposition deterrent activities against Earias vittella (spiny bollworm). Among the tested extracts DCM (Dichloromethane) extract showed highest ovicidal activity (70.47%) and oviposition deterrent activity (75.41%) against E. vittella. Based on this biological activity, DCM extract was fractionated and isolated 7 fractions; all of these were evaluated for their ovicidal and oviposition deterrent activity against E. vittella. Maximum ovicidal and oviposition deterrent activity was recorded in fraction 5, followed by the 7th fraction. Stearic acid was isolated from fraction 5 and was subjected to nanoparticle synthesis. This nanoparticle was tested for its effects against E. vittella. It was found to exhibit 100% oviposition deterrent and 95% ovicidal activities against E. vittella, and also reduced the protein (53.63%), glutothionine esterase (39.16%), and esterase activity (45.25%) of the treated larvae. The synthesized nanoparticle was subjected to ecotoxicology evaluation against Daphnia sp. (water fleas) and Cyprinus carpio (common carp). The nanoparticle showed >100 mg/L for EC50 and LC50 against both aquatic organisms. Based on the result, it could be studied further to develop the ecofriendly formulation with stability studies for agriculture pest management.


Assuntos
Carpas , Catharanthus , Inseticidas , Nanopartículas Metálicas , Animais , Ecotoxicologia , Feminino , Larva , Oviposição , Extratos Vegetais , Folhas de Planta , Prata , Ácidos Esteáricos
18.
Microb Pathog ; 117: 68-72, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427709

RESUMO

The present study elucidates an eco-friendly method for synthesizing silver nanoparticles using Phenerochaete chrysosporium (MTCC-787), its bactericidal and cytotoxic effect were studied. The formation of nanoparticles was evidenced by color change and UV-Vis spectroscopy. Atomic Force Microscope and Transmission electron microscope, showed spherical and oval shapes particles in the sizes ranging between 34 and 90 nm. The biosynthesised silver nanoparticles showed significant antibacterial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Staphylococcus epidermidis at a high dose. Further, the nanoparticles observed to be non-toxic at 12.5 µg/ml towards fibroblast cells.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Basidiomycota/metabolismo , Nanopartículas Metálicas/química , Prata/química , Fibroblastos/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
19.
Ann Clin Microbiol Antimicrob ; 13: 48, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25359605

RESUMO

BACKGROUND: Plant metabolites have wide applications and have the potential to cure different diseases caused by microorganisms. The aim of the study was to evaluate the antimicrobial, antibiofilm, cytotoxic, antifeedant and larvicidal properties of novel quinine isolated from Aegle marmelos (Linn.) Correa. METHODS: A compound was obtained by eluting the crude extract, using varying concentrations of the solvents by the chromatographic purification. Broth micro dilution method was used to assess the antimicrobial activity and anticancer study was evaluated using MTT assay. Larvicidal activity was studied using leaf disc no-choice method. RESULTS: Based on the IR, 13C NMR and 1H NMR spectral data, the compounds were identified as quinone related antibiotic. It exhibited significant activity against Gram positive and Gram negative bacteria. The lowest Minimum Inhibitory Concentration (MIC) of the compound against Bacillus subtilis and Staphylococcus aureus was 100 and 75 µg mL(-1) respectively. Against Escherichia coli and Pseudomonas aeruginosa it exhibited MIC value of 25 µg mL(-1). The MIC of the compound against Aspergillus niger, A. clavatus, Penicillium roqueforti was 20 µg mL(-1) and that against Fusarium oxysporum (20 µg mL(-1)), A. oryzae (40 µg mL(-1)), and Candida albicans (60 µg mL(-1)), respectively. It showed effective antibiofilm activity against E. coli, S. typhii and P. aeroginosa at 8 µg mL(-1) and did not exhibit considerable cytotoxic activity against Vero and HEP2 cell lines. Additionally, the compound documented significant antifeedant and larvicidal activities against Helicoverpa armigera and Spodoptera litura at 125, 250, 500 and 1000 ppm concentrations. CONCLUSION: The results concluded that the compound can be evaluated further in industrial applications and also an agent to prepare botanical new pesticide formulations.


Assuntos
Aegle/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Produtos Biológicos/farmacologia , Repelentes de Insetos/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Benzoquinonas/isolamento & purificação , Biofilmes/efeitos dos fármacos , Produtos Biológicos/isolamento & purificação , Linhagem Celular , Cromatografia Líquida , Técnicas Citológicas/métodos , Entomologia/métodos , Fungos/efeitos dos fármacos , Humanos , Repelentes de Insetos/isolamento & purificação , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Lepidópteros , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação
20.
Molecules ; 20(1): 384-95, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25551188

RESUMO

In the present study, chemical composition and the antibacterial mechanism of ambrette seed oil are investigated. Chemical composition of the oil was analysed by gas chromatography-mass spectrometry (GC-MS). Thirty-five compounds were identified and the major compounds were found to be farnesol acetate (51.45%) and ambrettolide (12.96%). The antibacterial activity was performed by well diffusion assay and the mechanisms were studied by measuring the alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and protein leakage assays. The antibacterial effect of the ambrette seed oil showed inhibitory effect against Bacillus subtilis, Staphylococcus aureus and Enterococcus faecalis. The LDH activity was high in all tested bacteria compared with control, whereas the ALP and protein concentrations were also increased in E. faecalis. Molecular docking revealed the ligands farnesol acetate and ambrettolide had satisfactory binding energy towards the beta lactamase TEM-72 and dihydrofolate reductase (DHFR) protein. Due to its better antibacterial properties, the ambrette seed oil could be used as a source of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Óleos de Plantas/farmacologia , Sementes/química , Staphylococcus aureus/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Antibacterianos/química , Cromatografia Gasosa-Espectrometria de Massas , L-Lactato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA