Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Pharm Res ; 34(9): 1796-1804, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28560696

RESUMO

PURPOSE: The present study investigated the immunogenic potential of different cationic liposome formulations with a DNA plasmid encoding Pfs25, a malaria transmission-blocking vaccine candidate. METHODS: Pfs25 plasmid DNA was complexed with cationic liposomes to produce lipoplexes at different charge ratios of the cationic lipid head group to the nucleotide phosphate (N:P). The formation of lipoplexes was visualized by Cryogenic-TEM. Confocal microscopy of lipoplexes formed with GFP encoding plasmid DNA, and flow cytometry was used to determine their in vitro transfection capability. Two different lipoplex formulations using plasmid DNA encoding Pfs25 were evaluated for in vivo immunogenicity after intramuscular administration in Balb/c mice. Immune sera were analyzed by ELISA. RESULTS: The results demonstrated that the cationic liposome-mediated DNA immunization with an N:P charge ratio of 1:3 (anionic lipoplexes) is more effective than the use of naked plasmid DNA alone. No antibody response was observed when lipoplexes with a higher N:P charge ratio of 10:3 (cationic lipoplexes) were used. Trehalose was added to some lipoplex formulations as a cryoprotectant and adjuvant, but it did not yield any further improvement of immunogenicity in vivo. CONCLUSIONS: The results suggest that Pfs25 plasmid DNA delivered as lipoplexes at a charge ratio of 1:3 elicited strong immunogenicity in mice and may be improved further to match the immune responses of DNA vaccines administered by in vivo electroporation.


Assuntos
Lipossomos/química , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Transfecção , Vacinas de DNA/administração & dosagem , Animais , Formação de Anticorpos , Cátions/química , Feminino , Células HEK293 , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Camundongos Endogâmicos BALB C , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Eletricidade Estática , Vacinas de DNA/genética , Vacinas de DNA/imunologia
2.
Mol Pharm ; 13(9): 3080-90, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27383214

RESUMO

High-intensity focused ultrasound (HIFU) can locally ablate biological tissues such as tumors, i.e., induce their rapid heating and coagulative necrosis without causing damage to surrounding healthy structures. It is widely used in clinical practice for minimally invasive treatment of prostate cancer. Nonablative, low-power HIFU was established as a promising tool for triggering the release of chemotherapeutic drugs from temperature-sensitive liposomes (TSLs). In this study, we combine ablative HIFU and thermally triggered chemotherapy to address the lack of safe and effective treatment options for elderly patients with high-risk localized prostate cancer. DU145 prostate cancer cells were exposed to chemotherapy (free and liposomal Sorafenib) and ablative HIFU, alone or in combination. Prior to cell viability assessment by trypan blue exclusion and flow cytometry, the uptake of TSLs by DU145 cells was verified by confocal microscopy and cryogenic scanning electron microscopy (cryo-SEM). The combination of TSLs encapsulating 10 µM Sorafenib and 8.7W HIFU resulted in a viability of less than 10% at 72 h post-treatment, which was significant less than the viability of the cells treated with free Sorafenib (76%), Sorafenib-loaded TSLs (63%), or HIFU alone (44%). This synergy was not observed on cells treated with Sorafenib-loaded nontemperature sensitive liposomes and HIFU. According to cryo-SEM analysis, cells exposed to ablative HIFU exhibited significant mechanical disruption. Water bath immersion experiments also showed an important role of mechanical effects in the synergistic enhancement of TSL-mediated chemotherapy by ablative HIFU. This combination therapy can be an effective strategy for treatment of geriatric prostate cancer patients.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Neoplasias da Próstata/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Microscopia Crioeletrônica , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos/química , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Niacinamida/química , Niacinamida/farmacologia , Compostos de Fenilureia/química , Sorafenibe
3.
J Pharm Sci ; 106(5): 1355-1362, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28159640

RESUMO

This study reports, for the first time, development of tyrosine kinase inhibitor-loaded, thermosensitive liposomes (TKI/TSLs) and their efficacy for treatment of renal cell carcinoma when triggered by focused ultrasound (FUS). Uptake of these nanoparticles into renal cancer cells was visualized with confocal and fluorescent imaging of rhodamine B-loaded liposomes. The combination of TKI/TSLs and FUS was tested in an in vitro tumor model of renal cell carcinoma. According to MTT cytotoxic assay and flow cytometric analysis, the combined treatment led to the least viability (23.4% ± 2.49%, p < 0.001), significantly lower than that observed from treatment with FUS (97.6% ± 0.67%, not significant) or TKI/TSL (71.0% ± 3.65%, p < 0.001) at 96 h compared to control. The importance of this unique, synergistic combination was demonstrated in viability experiments with non-thermosensitive liposomes (TKI/NTSL + FUS: 58.8% ± 1.5% vs. TKI/TSL + FUS: 36.2% ± 1.4%, p < 0.001) and heated water immersion (TKI/TSL + WB43°: 59.3% ± 2.91% vs. TKI/TSL + FUS: 36.4% ± 1.55%, p < 0.001). Our findings coupled with the existing use of FUS in clinical practice make the proposed combination of targeted chemotherapy, nanotechnology, and FUS a promising platform for enhanced drug delivery and cancer treatment.


Assuntos
Carcinoma de Células Renais/metabolismo , Liberação Controlada de Fármacos , Temperatura Alta , Neoplasias Renais/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Ondas Ultrassônicas , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Neoplasias Renais/tratamento farmacológico , Lipossomos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos da radiação , Resultado do Tratamento
4.
J Pestic Sci ; 41(3): 65-70, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30363127

RESUMO

Indoxacarb is commonly used to effectively control pests, cockroaches, termites, fleas, and houseflies. Although the toxicological profile of indoxacarb had already been well characterized, we examined the possible toxicological interaction with indoxacarb and endotoxin. Male Swiss albino mice aged 8-10 weeks were orally administered indoxacarb dissolved in groundnut oil at 4 mg/kg/day and 2 mg/kg/day for 90 days. On day 91, five animals from each group were challenged with lipopolysaccharides (LPS) at 80 µg/mouse, administered intranasally. Indoxacarb at 4 mg/kg significantly decreased Total leukocyte count, lymphocytopenia, and neutrophilia. Both doses of indoxacarb combined with LPS resulted in significant lymphocytopenia. Indoxacarb did not produce DNA damage in comet assay, but when combined with LPS, it resulted in a significant increase in tail length, tail moment, and olive moment. The data indicate that indoxacarb at 4 mg/kg administered orally for 90 days induced immune-response change. Further, both doses of indoxacarb, when combined with LPS, accelerate immunotoxicity and endotoxin-induced DNA damage.

5.
Evol Bioinform Online ; 11: 189-96, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380546

RESUMO

The present work focuses on the in silico characterization of functional divergence of two ovine cathelicidin coding sequence (cds) variants (ie, Cath1 and Cath2) of Indian sheep. Overlapping partial cds of both the cathelicidin variants were cloned in pJet1.2/blunt vector and sequenced. Evolutionary analysis of the Cath2 and Cath1 indicated that the mammalian cathelicidins clustered separately from avian fowlicidins. The avian fowlicidins, which are very different from mammalian cathelicidins (Caths), clearly displayed signatures of purifying selection. The pairwise sequence alignments of translated amino acid sequences of these two sheep cathelicidins showed gaps in the antimicrobial domain of Cath1 variant; however, the amino terminal cathelin regions of both the Caths were conserved. Amino acid sequence analysis of full-length cathelicidins available at public database revealed that Cath1, Cath2, and Cath7 of different ruminant species (including our Cath1 and Cath2 variants) formed individual clads, suggesting that these types have evolved to target specific types of microbes. In silico analysis of Cath1 and Cath2 peptide sequences indicated that the C-terminal antimicrobial peptide domain of Cath2 is more immunogenic than that of the ovine Cath1 due to its higher positive antigenic index, making Cath1 a promising antigen for production of monoclonal antibodies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA