Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(5): 2546-2564, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214235

RESUMO

Thiolutin is a natural product transcription inhibitor with an unresolved mode of action. Thiolutin and the related dithiolopyrrolone holomycin chelate Zn2+ and previous studies have concluded that RNA Polymerase II (Pol II) inhibition in vivo is indirect. Here, we present chemicogenetic and biochemical approaches to investigate thiolutin's mode of action in Saccharomyces cerevisiae. We identify mutants that alter sensitivity to thiolutin. We provide genetic evidence that thiolutin causes oxidation of thioredoxins in vivo and that thiolutin both induces oxidative stress and interacts functionally with multiple metals including Mn2+ and Cu2+, and not just Zn2+. Finally, we show direct inhibition of RNA polymerase II (Pol II) transcription initiation by thiolutin in vitro in support of classical studies that thiolutin can directly inhibit transcription in vitro. Inhibition requires both Mn2+ and appropriate reduction of thiolutin as excess DTT abrogates its effects. Pause prone, defective elongation can be observed in vitro if inhibition is bypassed. Thiolutin effects on Pol II occupancy in vivo are widespread but major effects are consistent with prior observations for Tor pathway inhibition and stress induction, suggesting that thiolutin use in vivo should be restricted to studies on its modes of action and not as an experimental tool.


Assuntos
Pirrolidinonas , RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Pirrolidinonas/farmacologia , RNA Polimerase II/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Zinco
2.
Pestic Biochem Physiol ; 192: 105408, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105635

RESUMO

Anti-reproductive potential of papaya seed chloroform extract-based solid lipid nanoparticles (PSCEN) was investigated for the first time in lesser bandicoot rat, Bandicota bengalensis. Mature male rats (n = 30 per group) were fed bait (loose mixture of cracked wheat, powdered sugar, and groundnut oil in the ratio 88:10:2) containing two different concentrations of PSCEN (5% and 10%) in a bi-choice condition for 15 days with one group as vehicle control. The ingestion of active ingredient in 15 days treatment was significantly (P ≤ 0.05) higher by rats treated with 10% PSCEN (39.17-58.70 g/kg body weight) as compared to rats treated with 5% PSCEN (21.30-33.23 g/kg body weight). A dose dependent significant (P ≤ 0.05) decrease was observed in the level of testosterone, FSH, LH and GnRH in plasma of treated rats. A significant (P ≤ 0.05) decrease was also observed in level of total soluble proteins, total lipids, phospholipids and cholesterol in both plasma and testicular tissue, and level of 17ß-HSD and 3ß-HSD in testicular tissue indicating anti-reproductive effects of PSCEN treatment. There was observed significant (P ≤ 0.05) effect of treatment on histomorphology of testis and cauda epididymis in the form of reduced tubular diameter, germinal epithelial thickness, number of germ cells and dissociation of epithelial cycle in seminiferous tubules, and reduced tubular diameter, increased epithelial thickness, vacuolization, loose contact of principle cells and reduced number of spermatozoa in the cauda epididymal tubules. Maximum antifertility effect was observed with 10% PSCEN treatment, which was not reversed upto 105 days of treatment withdrawal indicating long-term efficacy. The current investigation suggests the use of PSCEN in the management of reproduction of B. bengalensis by exerting influence on testicular and cauda epididymal functions and biochemical parameters.


Assuntos
Carica , Clorofórmio , Nanopartículas , Reprodução , Animais , Masculino , Ratos , Peso Corporal , Clorofórmio/farmacologia , Murinae , Espermatozoides , Testículo , Testosterona/farmacologia , Reprodução/efeitos dos fármacos
3.
Drug Chem Toxicol ; : 1-11, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37501612

RESUMO

The study is the first to formulate and investigate potential of papaya seed chloroform extract based solid lipid nanoparticles (PSCEN) as antifertility agents on male Bandicota bengalensis. The prepared nanoparticles were spherical of size 300-600 nm. The release kinetics showed a controlled release of the drug with major release over 48 h. To assess the antifertility effects of PSCEN, adult male rats were fed a diet containing two different concentrations of PSCEN (5% and 10%) for 15 days under bi-choice conditions. The mean total active ingredient ingestion of the rats in the two treated groups ranged from 2.13-3.31 and 3.92-5.87 g/100g body weight, respectively. No adverse effects of treatment on body weight were observed. Also, no mortality of rats was observed. The treatment had a significant effect on the weight of the testis and the epididymis, but not on the other organs. Sperm motility (%), sperm viability (%), sperm count (millions/ml), sperm mitochondrial activity (%), sperm nuclear chromatin de-condensation (%) and sperm hypo-osmotic swelling (%) were significantly decreased, and sperm abnormality (%) significantly increased compared to the vehicle control group. The reproductive success rates of male rats treated with 5% and 10% PSCEN and mated with untreated female rats were 20.00-66.67% and 16.67%, respectively, while in untreated female rats mated with male rats of vehicle control group, reproductive success rate was 33.33 to 80%. The study found a maximal antifertility effect of the 10% PSCEN containing bait, which was irreversible up to 105 days after stopping treatment, suggesting long-term efficacy.

4.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409397

RESUMO

Periodontal ligament derived stem cells (PDLSC) are adult multipotent mesenchymal-like stem cells (MSCs) that can induce a promising immunomodulation to interact with immune cells for disease treatment. Metabolic reconfiguration has been shown to be involved in the immunomodulatory activity of MSCs. However, the underlying mechanisms are largely unknown, and it remains a challenging to establish a therapeutic avenue to enhance immunomodulation of endogenous stem cells for disease management. In the present study, RNA-sequencing (RNA-seq) analysis explores that curcumin significantly promotes PDLSC function through activation of MSC-related markers and metabolic pathways. In vitro stem cell characterization further confirms that self-renewal and multipotent differentiation capabilities are largely elevated in curcumin treated PDLSCs. Mechanistically, RNA-seq reveals that curcumin activates ERK and mTOR cascades through upregulating growth factor pathways for metabolic reconfiguration toward glycolysis. Interestingly, PDLSCs immunomodulation is significantly increased after curcumin treatment through activation of prostaglandin E2-Indoleamine 2,3 dioxygenase (PGE2-IDO) signaling, whereas inhibition of glycolysis activity by 2-deoxyglucose (2-DG) largely blocked immunomodulatory capacity of PDLSCs. Taken together, this study provides a novel pharmacological approach to activate endogenous stem cells through metabolic reprogramming for immunomodulation and tissue regeneration.


Assuntos
Curcumina , Células-Tronco Mesenquimais , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Curcumina/metabolismo , Curcumina/farmacologia , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Ligamento Periodontal
5.
Hepatology ; 65(5): 1462-1477, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28090674

RESUMO

Hepatitis C virus (HCV) infection is a common risk factor for the development of liver cancer. The molecular mechanisms underlying this effect are only partially understood. Here, we show that the HCV protein, nonstructural protein (NS) 5B, directly binds to the tumor suppressor, NORE1A (RASSF5), and promotes its proteosomal degradation. In addition, we show that NORE1A colocalizes to sites of HCV viral replication and suppresses the replication process. Thus, NORE1A has antiviral activity, which is specifically antagonized by NS5B. Moreover, the suppression of NORE1A protein levels correlated almost perfectly with elevation of Ras activity in primary human samples. Therefore, NORE1A inactivation by NS5B may be essential for maximal HCV replication and may make a major contribution to HCV-induced liver cancer by shifting Ras signaling away from prosenescent/proapoptotic signaling pathways. CONCLUSION: HCV uses NS5B to specifically suppress NORE1A, facilitating viral replication and elevated Ras signaling. (Hepatology 2017;65:1462-1477).


Assuntos
Hepacivirus/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/virologia , Regulação para Baixo , Células HEK293 , Humanos , Fígado/metabolismo , Fígado/virologia , Neoplasias Hepáticas/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
J Enzyme Inhib Med Chem ; 30(5): 778-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25676325

RESUMO

Arachidonic acid is an unsaturated fatty acid liberated from phospholipids of cell membranes. NSAIDs are known as targets of cyclooxygenase enzyme (COX-1, COX-2 and COX-3) in arachidonic acid metabolism. This mechanism of COX-2 in carcinogenesis causes cancer. In addition, COX-2 plays a role in the early stages of hepatocarcinogenesis. Hepatitis C virus (HCV) infection is cause of liver cirrhosis and hepatocellular carcinoma (HCC). The aim of our study was to improve effective agents against HCV. A novel series of new etodolac 1,2,4-triazoles derivatives (4a-h) have been synthesized and investigated for their activity against HCV NS5B polymerase. Compound 4a was found to be the most active with IC(50) value of 14.8 µM. In accordance with these results, compound 4a was screened for anti-cancer activity on liver cancer cell lines (Huh7, Mahlavu, HepG2, FOCUS). Compound 4a showed anti-cancer activity against Huh7 human hepatoma cell line with IC(50) value of 4.29 µM. Therefore, compound 4a could be considered as a new anti-cancer and anti-HCV lead compound.


Assuntos
Antineoplásicos/farmacologia , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Etodolac/análogos & derivados , Hepacivirus/efeitos dos fármacos , Triazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Etodolac/síntese química , Etodolac/química , Etodolac/farmacologia , Hepacivirus/enzimologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Proteínas não Estruturais Virais/metabolismo
7.
Front Oral Health ; 5: 1378566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567313

RESUMO

Introduction: The human host defense peptide LL-37 is a component of the innate immune defense mechanisms of the oral cavity against colonization by microbes associated with periodontal disease. We have previously shown that the active form of vitamin D, 1,25(OH)2D3, can induce the expression of LL-37 in gingival epithelial cells (GEC), and prevent the invasion and growth of periopathogenic bacteria in these cells. Further, experimental vitamin D deficiency resulted in increased gingival inflammation and alveolar bone loss. Epidemiological studies have shown associations between vitamin D deficiency and periodontal disease in humans, suggesting application of vitamin D could be a useful therapeutic approach. Further, since we have shown the local activation of vitamin D by enzymes expressed in the GEC, we hypothesized that we could observe this enhancement with the stable, and inexpensive inactive form of vitamin D, which could be further increased with epigenetic regulators. Methods: We treated 3-dimensional primary cultures of GEC topically with the inactive form of vitamin D, in the presence and absence of selected histone deacetylase (HDAC) inhibitors. LL-37 mRNA levels were quantified by quantitative RT-PCR, and inhibition of invasion of bacteria was measured by fluorescence microscopy. Results: Vitamin D treatment led to an induction of LL-37 mRNA levels, as well as an inhibition of pro-inflammatory cytokine secretion. This effect was further enhanced by HDAC inhibitors, most strongly when the HDAC inhibitor, phenyl butyrate (PBA) was combined with Vitamin D3. This was observed both in solution and in a prototype gel formulation using sodium butyrate. Finally, this combination treatment led to an increase in the antimicrobial activity against infection by Porphyromonas gingivalis and Filifactor alocis, bacteria associated with periodontal lesions, as well as herpes simplex virus, which has also been shown to be associated with periodontal lesions. Conclusions: Our results demonstrate that a combination of inactive vitamin D and sodium butyrate could be developed as a safe treatment for periodontal disease.

8.
Clin Pharmacol Ther ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847597

RESUMO

Administration of a new drug candidate in a first-in-human (FIH) clinical trial is a particularly challenging phase in drug development and is especially true for immunomodulators, which are a diverse and complex class of drugs with a broad range of mechanisms of action and associated safety risks. Risk is generally greater for immunostimulators, in which safety concerns are associated with acute toxicity, compared to immunosuppressors, where the risks are related to chronic effects. Current methodologies for FIH dose selection for immunostimulators are focused primarily on identifying the minimum anticipated biological effect level (MABEL), which has often resulted in sub-therapeutic doses, leading to long and costly escalation phases. The Health and Environmental Sciences Institute (HESI) - Immuno-Safety Technical Committee (ITC) organized a project to address this issue through two complementary approaches: (i) an industry survey on FIH dose selection strategies and (ii) detailed case studies for immunomodulators in oncology and non-oncology indications. Key messages from the industry survey responses highlighted a preference toward more dynamic PK/PD approaches as in vitro assays are seemingly not representative of true physiological conditions for immunomodulators. These principles are highlighted in case studies. To address the above themes, we have proposed a revised decision tree, which expands on the guidance by the IQ MABEL Working Group (Leach et al. 2021). This approach facilitates a more refined recommendation of FIH dose selection for immunomodulators, allowing for a nuanced consideration of their mechanisms of action (MOAs) and the associated risk-to-benefit ratio, among other factors.

9.
Bioorg Med Chem ; 21(11): 3262-71, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23598249

RESUMO

Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50=7.7 µM) and 2 (IC50=10.6 µM) as represented by hybrid compound 27 (IC50=6.7 µM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 µM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the D-isomers 41 (IC50=19.3 µM) and 45 (IC50=5.4 µM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.


Assuntos
Antivirais/síntese química , Hepacivirus/química , Fenilalanina/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Tiazolidinas/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Sítios de Ligação , Desenho de Fármacos , Hepacivirus/enzimologia , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/química , Estereoisomerismo , Relação Estrutura-Atividade , Tiazolidinas/química , Proteínas não Estruturais Virais/química
10.
Nat Commun ; 14(1): 1547, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941254

RESUMO

Accurate transcription is required for the faithful expression of genetic information. However, relatively little is known about the molecular mechanisms that control the fidelity of transcription, or the conservation of these mechanisms across the tree of life. To address these issues, we measured the error rate of transcription in five organisms of increasing complexity and found that the error rate of RNA polymerase II ranges from 2.9 × 10-6 ± 1.9 × 10-7/bp in yeast to 4.0 × 10-6 ± 5.2 × 10-7/bp in worms, 5.69 × 10-6 ± 8.2 × 10-7/bp in flies, 4.9 × 10-6 ± 3.6 × 10-7/bp in mouse cells and 4.7 × 10-6 ± 9.9 × 10-8/bp in human cells. These error rates were modified by various factors including aging, mutagen treatment and gene modifications. For example, the deletion or modification of several related genes increased the error rate substantially in both yeast and human cells. This research highlights the evolutionary conservation of factors that control the fidelity of transcription. Additionally, these experiments provide a reasonable estimate of the error rate of transcription in human cells and identify disease alleles in a subunit of RNA polymerase II that display error-prone transcription. Finally, we provide evidence suggesting that the error rate and spectrum of transcription co-evolved with our genetic code.


Assuntos
RNA Polimerase II , Transcrição Gênica , Animais , Humanos , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Artif Intell Med ; 144: 102658, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37783540

RESUMO

Artificial intelligence (AI) offers opportunities but also challenges for biomedical research and healthcare. This position paper shares the results of the international conference "Fair medicine and AI" (online 3-5 March 2021). Scholars from science and technology studies (STS), gender studies, and ethics of science and technology formulated opportunities, challenges, and research and development desiderata for AI in healthcare. AI systems and solutions, which are being rapidly developed and applied, may have undesirable and unintended consequences including the risk of perpetuating health inequalities for marginalized groups. Socially robust development and implications of AI in healthcare require urgent investigation. There is a particular dearth of studies in human-AI interaction and how this may best be configured to dependably deliver safe, effective and equitable healthcare. To address these challenges, we need to establish diverse and interdisciplinary teams equipped to develop and apply medical AI in a fair, accountable and transparent manner. We formulate the importance of including social science perspectives in the development of intersectionally beneficent and equitable AI for biomedical research and healthcare, in part by strengthening AI health evaluation.


Assuntos
Pesquisa Biomédica , Medicina , Humanos , Inteligência Artificial , Atenção à Saúde , Ciências Sociais
12.
Foods ; 10(8)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34441480

RESUMO

Foods rich in poly unsaturated fatty acids (PUFA) are vulnerable to oxidation. While it is well established that endogenously derived oxidized lipids are ligands of the transcription factor PPARγ, the binding ability of diet-derived oxidized lipids is unknown. Our two-fold objective was to determine the oxidized lipid content and PPARγ binding ability of commonly consumed foods. Extracted food lipids were assayed for the peroxide value, conjugated dienes, and aldehydes, and PPARγ binding was assessed by an in vitro PPARγ ligand screening assay. Oxidized lipids were present in all foods tested at the time of purchase, and oxidation did not increase during storage. The peroxide values for walnuts, sunflower seeds, and flax meal were significantly lower at the end of three months as compared to the day of purchase (peroxide value: 1.26 ± 0.13 vs. 2.32 ± 0.4; 1.65 ± 0.23 vs. 2.08 ± 0.09; 3.07 ± 0.22 vs. 9.94 ± 0.75 mEq/kg fat, p ≤ 0.05, respectively). Lipids extracted from French fries had the highest binding affinity (50.87 ± 11.76%) to PPARγ compared to other foods. Our work demonstrates that oxidized lipids are present in commonly consumed foods when purchased, and for the first time demonstrates that some contain ligands of PPARγ.

13.
HGG Adv ; 2(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33665635

RESUMO

De novo germline variation in POLR2A was recently reported to associate with a neurodevelopmental disorder. We report twelve individuals harboring putatively pathogenic de novo or inherited variants in POLR2A, detail their phenotypes, and map all known variants to the domain structure of POLR2A and crystal structure of RNA polymerase II. Affected individuals were ascertained from a local data lake, pediatric genetics clinic, and an online community of families of affected individuals. These include six affected by de novo missense variants (including one previously reported individual), four clinical laboratory samples affected by missense variation with unknown inheritance-with yeast functional assays further supporting altered function-one affected by a de novo in-frame deletion, and one affected by a C-terminal frameshift variant inherited from a largely asymptomatic mother. Recurrently observed phenotypes include ataxia, joint hypermobility, short stature, skin abnormalities, congenital cardiac abnormalities, immune system abnormalities, hip dysplasia, and short Achilles tendons. We report a significantly higher occurrence of epilepsy (8/12, 66.7%) than previously reported (3/15, 20%) (p value = 0.014196; chi-square test) and a lower occurrence of hypotonia (8/12, 66.7%) than previously reported (14/15, 93.3%) (p value = 0.076309). POLR2A-related developmental disorders likely represent a spectrum of related, multi-systemic developmental disorders, driven by distinct mechanisms, converging at a single locus.

14.
J Chem Inf Model ; 50(4): 662-76, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20225870

RESUMO

The viral NS5B RNA-dependent RNA-polymerase (RdRp) is one of the best-studied and promising targets for the development of novel therapeutics against hepatitis C virus (HCV). Allosteric inhibition of this enzyme has emerged as a viable strategy toward blocking replication of viral RNA in cell based systems. Herein, we describe how the combination of a complete computational procedure together with biological studies led to the identification of novel molecular scaffolds, hitherto untested toward NS5B polymerase. Structure based 3-D quantitative structure-activity relationship (QSAR) models were generated employing NS5B non-nucleoside inhibitors (NNIs), whose bound conformations were readily available from the protein database (PDB). These were grouped into two training sets of structurally diverse NS5B NNIs, based on their binding to the enzyme thumb (15 NNIs) or palm (10 NNIs) domains. Ligand based (LB) and structure based (SB) alignments were rigorously investigated to assess the reliability on the correct molecular alignment for unknown binding mode modeled compounds. Both Surflex and Autodock programs were able to reproduce with minimal errors the experimental binding conformations of 24 experimental NS5B allosteric inhibitors. Eighty-one (thumb) and 223 (palm) modeled compounds taken from literature were LB and SB aligned and used as external validation sets for the development of 3-D QSAR models. Low error of prediction proved the 3-D QSARs to be useful scoring functions for the in silico screening procedure. Finally, the virtual screening of the NCI Diversity Set led to the selection for enzymatic assays of 20 top-scoring molecules for each final model. Among the 40 selected molecules, preliminary data yielded four derivatives exhibiting IC(50) values ranging between 45 and 75 microM. Binding mode analysis of hit compounds within the NS5B polymerase thumb domain showed that one of them, NSC 123526, exhibited a docked conformation which was in good agreement with the thumb training set most active compound (6).


Assuntos
Biologia Computacional , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hepacivirus/enzimologia , Relação Quantitativa Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Hepacivirus/efeitos dos fármacos , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Conformação Proteica , Reprodutibilidade dos Testes , Interface Usuário-Computador , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
15.
Bioorg Med Chem ; 18(13): 4630-8, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20627595

RESUMO

Hepatitis C virus (HCV) NS5B polymerase is a key target for the development of therapeutic agents aimed at the treatment of HCV infections. Here we report on the identification of novel allosteric inhibitors of HCV NS5B through a combination of structure-based virtual screening, synthesis and structure-activity relationship (SAR) optimization approach. Virtual screening of 260,000 compounds from the ChemBridge database against the tetracyclic indole inhibitor binding pocket of NS5B (allosteric pocket-1, AP-1), sequentially down-sized the library by 4 orders of magnitude to yield 23 candidates. In vitro evaluation of the NS5B inhibitory activity of the in-silico selected compounds resulted in 17% hit rate, identifying two novel chemotypes. Of these, compound 3, bearing the rhodanine scaffold, proved amenable for productive SAR exploration and synthetic modification. As a result, 25 derivatives that exhibited IC50 values ranging from 7.7 to 68.0 µM were developed. Docking analysis of lead compound 28 within the tetracyclic indole- and benzylidene-binding allosteric pockets (AP-1 and AP-3, respectively) of NS5B revealed topological similarities between these two pockets. Compound 28, a novel rhodanine analog with NS5B inhibitory potency in the low micromolar level range may be a promising lead for future development of more potent NS5B inhibitors.


Assuntos
Antivirais/química , Compostos de Benzilideno/síntese química , Inibidores Enzimáticos/síntese química , Hepacivirus/enzimologia , Tiazóis/síntese química , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica , Antivirais/síntese química , Antivirais/farmacologia , Compostos de Benzilideno/química , Compostos de Benzilideno/farmacologia , Sítios de Ligação , Simulação por Computador , Bases de Dados Factuais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Rodanina/síntese química , Rodanina/química , Rodanina/farmacologia , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacologia , Proteínas não Estruturais Virais/metabolismo
16.
Indian J Exp Biol ; 48(9): 889-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21506496

RESUMO

The R2B strain of virus of new castle disease virus (NDV) was propagated in 9-11 day old embryonated chicken eggs via allantoic cavity route and after seven serial passages virus was purified from allantoic fluid. Purified virus was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis which yielded six major polypeptides ranging from 38-200 kDa. Protein fractions, corresponding to 75 and 56kDa, resembling haemagglutinin-neuraminidase (HN) and fusion (F) proteins were used to ascertain their immunization potential. Immunization of viral proteins was compared with the whole virus vaccine. Among different group of birds, highest haemagglutination inhibition (HI) and enzyme linked immunosorbent assay (ELISA) titers were obtained in birds immunized with whole virus vaccine followed by viral proteins, 75 and 56kDa in combination which was comparable with birds immunized with 56kDa protein alone. Despite lower values of HI and ELISA titers elicited by viral subunits in immunized birds, when challenged with virulent NDV strain, protection accorded by viral proteins in combination (75 +56kDa) or 56kDa alone was comparable with whole virus vaccine.


Assuntos
Vírus da Doença de Newcastle/imunologia , Proteínas Virais/química , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Embrião de Galinha , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Hemaglutinação , Peso Molecular , Vírus da Doença de Newcastle/isolamento & purificação , Titulometria
17.
Front Physiol ; 11: 609614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519515

RESUMO

Inflammation is a well-organized protective response to pathogens and consists of immune cell recruitment into areas of infection. Inflammation either clears pathogens and gets resolved leading to tissue healing or remains predominantly unresolved triggering pathological processes in organs. Periodontal disease (PD) that is initiated by specific bacteria also triggers production of inflammatory mediators. These processes lead to loss of tissue structure and function. Reactive oxygen species and oxidative stress play a role in susceptibility to periodontal pathogenic bacterial infections. Periodontal inflammation is a risk factor for systemic inflammation and eventually cardiovascular disease (CVD). This review discusses the role of inflammation in PD and its two way association with other health conditions such as diabetes and CVD. Some of the mechanisms underpinning the links between inflammation, diabetes, CVD and PD are also discussed. Finally, we review available epidemiological data and other reports to assess possible links between oral health and CVD.

18.
J Periodontol ; 91 Suppl 1: S68-S78, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32633810

RESUMO

BACKGROUND: Infection and inflammation induce epigenetic changes that alter gene expression. In periodontal disease, inflammation, and microbial dysbiosis occur, which can lead to compromised barrier function of the gingival epithelia. Here, we tested the hypotheses that infection of cultured human gingival epithelial (HGEp) cells with Porphyromonas gingivalis disrupts barrier function by inducing epigenetic alterations and that these effects can be blocked by inhibitors of DNA methylation. METHODS: Primary HGEp cells were infected with P. gingivalis either in the presence or absence of the non-nucleoside DNA methyltransferase (DNMT) inhibitors RG108, (-) epigallocatechin-3-gallate (EGCG), or curcumin. Barrier function was assessed as transepithelial electrical resistance (TEER). DNA methylation and mRNA abundance were quantified for genes encoding components of three cell-cell junction complexes, CDH1, PKP2, and TJP1. Cell morphology and the abundance of cell-cell junction proteins were evaluated by confocal microscopy. RESULTS: Compared to non-infected cells, P. gingivalis infection decreased TEER (P < 0.0001) of HGEp cells; increased methylation of the CDH1, PKP2, and TJP1 (P < 0.0001); and reduced their expression (mRNA abundance) (P < 0.005). Pretreatment with DNMT inhibitors prevented these infection-induced changes in HGEp cells, as well as the altered morphology associated with infection. CONCLUSION: Pathogenic infection induced changes in DNA methylation and impaired the barrier function of cultured primary gingival epithelial cells, which suggests a mechanism for systemic consequences of periodontal disease. Inhibition of these events by non-nucleoside DNMT inhibitors represents a potential strategy to treat periodontal disease.


Assuntos
Metilação de DNA , Gengiva , Células Cultivadas , Células Epiteliais , Humanos , Porphyromonas gingivalis
19.
Cancer Res ; 67(12): 5771-8, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17575144

RESUMO

DNA methyltransferase 1 (DNMT1) is responsible for copying DNA methylation patterns to the daughter strands during DNA replication. Its expression is frequently up-regulated in human tumors, including hepatocellular carcinoma, but the mechanism of overexpression and its biological significance remain unclear. Here, we show that hepatitis B virus X protein (HBx) activates DNMT1 expression via a regulatory circuit involving the p16(INK4a)-cyclin D1-cyclin-dependent kinase (CDK) 4/6-retinoblastoma protein (pRb)-E2F1 pathway. HBx induced DNA hypermethylation of p16(INK4a) promoter to repress its expression, which subsequently led to activation of G1-CDKs, phosphorylation of pRb, activation of E2F1, and finally transcriptional activation of DNMT1. Inhibition of DNMT1 activity by either treatment with 5'-Aza-2'dC or introduction of DNMT1 small interfering RNA not only abolished the DNA methylation-mediated p16(INK4a) repression but also impaired DNMT1 expression itself, suggesting a cross-talk between DNMT1 and p16(INK4a). The up-regulation of cyclin D1 by HBx is likely to serve as an initiative impulse for the circuit because it was absolutely required for the activation of DNMT1 expression. We also observed that accumulated DNMT1 via this pathway inactivates E-cadherin expression through promoter hypermethylation. Considering that the pRb-E2F1 pathway is commonly activated in human tumors, activation of this circuit might be widespread and a potential therapeutic target.


Assuntos
Metilases de Modificação do DNA/biossíntese , Fator de Transcrição E2F1/metabolismo , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Western Blotting , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metilação de DNA , Humanos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteínas Virais Reguladoras e Acessórias
20.
Cancer Lett ; 261(2): 244-52, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18164808

RESUMO

E-cadherin is a major cell adhesion molecule implicated as a potent tumor suppressor, which is frequently altered in human tumors including hepatocellular carcinoma. Here, we report that hepatitis C virus Core downregulates E-cadherin expression at the transcription level. This effect was abolished after treatment of 5'-Aza-2'dC, a specific inhibitor of DNA methyltransferase (DNMT). In addition, this repression was strongly correlated with hypermethylation of CpG islands of E-cadherin promoter via concerted action of both DNMT1 and 3b in Core-expressing cells. The decreased E-cadherin expression results in dramatic morphological changes in Core-expressing cells. In addition, Core-expressing cells aggregate poorly in suspension culture, reflecting their altered cell-cell interactions. The biological significance was further demonstrated by the increased collagen invasion ability of Core-expressing cells. Therefore, our finding suggests that Core plays a role in hepatocellular carcinogenesis by favoring cell detachment from the surrounding cells and migration outside of the primary tumor site.


Assuntos
Caderinas/genética , Carcinoma Hepatocelular/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas do Core Viral/metabolismo , Western Blotting , Caderinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Movimento Celular , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Primers do DNA , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Plasmídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA