Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Angew Chem Int Ed Engl ; 62(41): e202307884, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604782

RESUMO

Triangulenes are a class of open-shell triangular graphene flakes with total spin increasing with their size. In the last years, on-surface-synthesis strategies have permitted fabricating and engineering triangulenes of various sizes and structures with atomic precision. However, direct proof of the increasing total spin with their size remains elusive. In this work, we report the combined in-solution and on-surface synthesis of a large nitrogen-doped triangulene (aza-[5]-triangulene) on a Au(111) surface, and the detection of its high-spin ground state. Bond-resolved scanning tunneling microscopy images uncovered radical states distributed along the zigzag edges, which were detected as weak zero-bias resonances in scanning tunneling spectra. These spectral features reveal the partial Kondo screening of a high-spin state. Through a combination of several simulation tools, we find that the observed distribution of radical states is explained by a quintet ground state (S=2), instead of the quartet state (S=3/2) expected for the neutral species. This confirms that electron transfer to the metal substrate raises the spin of the ground state. We further provide a qualitative description of the change of (anti)aromaticity introduced by N-substitution, and its role in the charge stabilization on a surface, resulting in an S=2 aza-triangulene on Au(111).

2.
Phys Chem Chem Phys ; 24(19): 11510-11519, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35362496

RESUMO

The computational study of DNA and its interaction with ligands is a highly relevant area of research, with significant consequences for developing new therapeutic strategies. However, the computational description of such large and complex systems requires considering interactions of different types simultaneously in a balanced way, such as non-covalent weak interactions (namely hydrogen bonds and stacking), metal-ligand interactions, polarisation and charge transfer effects. All these considerations imply a real challenge for computational chemistry. The possibility of studying large biological systems using quantum methods for the entire system requires significant computational resources, with improvements in parallelisation and optimisation of theoretical strategies. Computational methods, such as Linear-Scaling Density Functional Theory (LS-DFT) and DLPNO-CCSD(T), may allow performing ab initio quantum mechanics calculations, including the electronic structure for large biological systems, in a reasonable computing time. In this work, we study the interaction of small molecules and cations with DNA (both duplex DNA and G-quadruplexes), comparing different computational methods: a LS-DFT method at the LMKLL/DZDP level of theory, semi-empirical methods (PM6-DH2 and PM7), mixed QM/MM, and DLPNO-CCSD(T). Our goal is to demonstrate the adequacy of LS-DFT to treat the different types of interactions present in DNA-dependent systems. We show that LMKLL/DZDP using SIESTA can yield very accurate geometries and energetics in all the different systems considered in this work: duplex DNA (dDNA), phenanthroline intercalating dDNA, G-quadruplexes, and metal-G-tetrads considering alkaline metals of different sizes. As far as we know, this is the first time that full G-quadruplex geometry optimisations have been carried out using a DFT method thanks to its linear-scaling capabilities. Moreover, we show that LS-DFT provides high-quality structures, and some semi-empirical Hamiltonians can also yield suitable geometries. However, DLPNO-CCSD(T) and LS-DFT are the only methods that accurately describe interaction energies for all the systems considered in our study.


Assuntos
Quadruplex G , DNA/química , Ligação de Hidrogênio , Ligantes , Teoria Quântica
3.
J Chem Phys ; 153(3): 034113, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716198

RESUMO

Knowledge of the electronic stopping curve for swift ions, Se(v), particularly around the Bragg peak, is important for understanding radiation damage. Experimentally, however, the determination of such a feature for light ions is very challenging, especially in disordered systems such as liquid water and biological tissue. Recent developments in real-time time-dependent density functional theory (rt-TDDFT) have enabled the calculation of Se(v) along nm-sized trajectories. However, it is still a challenge to obtain a meaningful statistically averaged Se(v) that can be compared to observations. In this work, taking advantage of the correlation between the local electronic structure probed by the projectile and the distance from the projectile to the atoms in the target, we devise a trajectory pre-sampling scheme to select, geometrically, a small set of short trajectories to accelerate the convergence of the averaged Se(v) computed via rt-TDDFT. For protons in liquid water, we first calculate the reference probability distribution function (PDF) for the distance from the proton to the closest oxygen atom, ϕR(rp→O), for a trajectory of a length similar to those sampled experimentally. Then, short trajectories are sequentially selected so that the accumulated PDF reproduces ϕR(rp→O) to increasingly high accuracy. Using these pre-sampled trajectories, we demonstrate that the averaged Se(vp) converges in the whole velocity range with less than eight trajectories, while other averaging methods using randomly and uniformly distributed trajectories require approximately ten times the computational effort. This allows us to compare the Se(vp) curve to experimental data and assess widely used empirical tables based on Bragg's rule.

4.
J Chem Phys ; 152(20): 204108, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486661

RESUMO

A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.

5.
J Chem Phys ; 153(2): 024117, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668924

RESUMO

First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include "heavy-duty" ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.

6.
Phys Chem Chem Phys ; 21(18): 9433-9440, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31011737

RESUMO

A method to predict the near-infrared spectra of amorphous solids by means of ab initio molecular dynamics is presented. These solids can simulate molecular ices. To test the method, mixtures of methane, water and nitrogen are generated as amorphous samples of various concentrations. The full theoretical treatment includes as a first step, the optimization of their geometrical structure for a range of densities, after which, the most stable systems are taken as initial structures for molecular dynamics, performed at 200 K in trajectories of 4 ps duration with a 0.2 fs time step. All the dynamics are carried out using the first principles method, solving the quantum problem for the electrons using density-functional theory (DFT), and integrating the DFT forces, following the Born-Oppenheimer dynamics. After the dynamics, near-IR spectra are predicted by the Fourier transform of the macroscopic polarization autocorrelation function. The calculated spectra are compared with the experimental spectra of ice mixtures of CH4 and H2O recorded in our laboratory, and with some spectra recorded by the New Horizons mission on Pluto.

7.
Phys Rev Lett ; 121(11): 116401, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265097

RESUMO

Electronic stopping power in the keV/Å range is accurately calculated from first principles for high atomic-number projectiles and the effect of core states is carefully assessed. The energy loss to electrons in self-irradiated nickel is studied using real-time time-dependent density functional theory. Different core states are explicitly included in the simulations to understand their involvement in the dissipation mechanism. The core electrons of the projectile are found to open additional dissipation channels as the projectile velocity increases. Almost all of the energy loss is accounted for, even for high projectile velocities, when core electrons as deep as 2s^{2}2p^{6} are explicitly treated. In addition to their expected excitation at high velocities, a flapping dynamical response of the projectile core electrons is observed at intermediate velocities. The empirical reference data are well reproduced in the projectile velocity range of 1.0-12.0 a.u. (1.5-210 MeV).

8.
Phys Chem Chem Phys ; 19(10): 7280-7287, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28239717

RESUMO

Models for the inclusion of water molecules in carbon monoxide matrices are developed using density functional theory applied to amorphous solid systems. The models cover a large range of systems for smaller or larger CO matrices with different water content, consisting of either individual H2O molecules or small clusters linked by H-bonds. The vibrational spectra of the samples are predicted at the minimum of their potential energy surface. The spectra allow instances where the water molecules remain isolated or form aggregates to be discerned, and they also provide an indication of the strength of the H-bonding, when present. The calculations support recent experimental observations that linked IR bands at 3707 cm-1 and 3617 cm-1 to the presence of unbound water molecules in water-poor CO/H2O mixed ices. Assignment of some observed bands to water dimers or trimers is suggested as well. The residual static pressure in fixed-volume simulation cells is also calculated.

9.
J Chem Phys ; 147(19): 194509, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166107

RESUMO

Water confined to nanoscale widths in two dimensions between ideal planar walls has been the subject of ample study, aiming at understanding the intrinsic response of water to confinement, avoiding the consideration of the chemistry of actual confining materials. In this work, we study the response of such nanoconfined water to the imposition of a periodicity in the confinement by means of computer simulations, both using empirical potentials and from first-principles. For that we propose a periodic confining potential emulating the atomistic oscillation of the confining walls, which allows varying the lattice parameter and amplitude of the oscillation. We do it for a triangular lattice, with several values of the lattice parameter: one which is ideal for commensuration with layers of Ih ice and other values that would correspond to more realistic substrates. For the former, the phase diagram shows an overall rise of the melting temperature. The liquid maintains a bi-layer triangular structure, however, despite the fact that it is not favoured by the external periodicity. The first-principles liquid is significantly affected by the modulation in its layering and stacking even at relatively small amplitudes of the confinement modulation. Beyond some critical modulation amplitude, the hexatic phase present in flat confinement is replaced by a trilayer crystalline phase unlike any of the phases encountered for flat confinement. For more realistic lattice parameters, the liquid does not display higher tendency to freeze, but it clearly shows inhomogeneous behaviour as the strength of the rugosity increases. In spite of this expected inhomogeneity, the structural and dynamical response of the liquid is surprisingly insensitive to the external modulation. Although the first-principles calculations give a more triangular liquid than the one observed with empirical potentials (TIP4P/2005), both agree remarkably well for the main conclusions of the study.

10.
Phys Rev Lett ; 116(8): 085901, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26967426

RESUMO

A novel kind of crystal order in high-density nanoconfined bilayer ice is proposed from molecular dynamics and density-functional theory simulations. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with AA stacking. Uniquely among the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a configurational entropy twice that of bulk ice.

11.
Nature ; 445(7126): 410-3, 2007 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17251975

RESUMO

Spin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 microm gap between epitaxial electrodes of the highly spin polarized manganite La(0.7)Sr(0.3)MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.

12.
J Chem Phys ; 139(19): 194502, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24320334

RESUMO

The isothermal compressibility of water is essential to understand its anomalous properties. We compute it by ab initio molecular dynamics simulations of 200 molecules at five densities, using two different van der Waals density functionals. While both functionals predict compressibilities within ~30% of experiment, only one of them accurately reproduces, within the uncertainty of the simulation, the density dependence of the self-diffusion coefficient in the anomalous region. The discrepancies between the two functionals are explained in terms of the low- and high-density structures of the liquid.

13.
R Soc Open Sci ; 10(4): 230063, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37122948

RESUMO

We present a code modularization approach to design efficient and massively parallel cubic- and linear-scaling solvers for electronic structure calculations using atomic orbitals. The modular implementation of the orbital minimization method, in which linear algebra and parallelization issues are handled via external libraries, is demonstrated in the SIESTA code. The distributed block compressed sparse row (DBCSR) and scalable linear algebra package (ScaLAPACK) libraries are used for algebraic operations with sparse and dense matrices, respectively. The MatrixSwitch and libOMM libraries, recently developed within the Electronic Structure Library, facilitate switching between different matrix formats and implement the energy minimization. We show results comparing the performance of several cubic-scaling algorithms, and also demonstrate the parallel performance of the linear-scaling solvers, and their supremacy over the cubic-scaling solvers for insulating systems with sizes of several hundreds of atoms.

14.
Phys Rev Lett ; 108(21): 213201, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003250

RESUMO

The Born-Oppenheimer approximation is the keystone for molecular dynamics simulations of radiation damage processes; however, actual materials response involves nonadiabatic energy exchange between nuclei and electrons. In this work, time dependent density functional theory is used to calculate the electronic excitations produced by energetic protons in Al. We study the influence of these electronic excitations on the interatomic forces and find that they differ substantially from the adiabatic case, revealing a nontrivial connection between electronic and nuclear stopping that is absent in the adiabatic case. These results unveil new effects in the early stages of radiation damage cascades.

15.
Phys Rev Lett ; 108(22): 225504, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003620

RESUMO

The electronic stopping power of H and He moving through gold is obtained to high accuracy using time-evolving density-functional theory, thereby bringing usual first principles accuracies into this kind of strongly coupled, continuum nonadiabatic processes in condensed matter. The two key unexplained features of what observed experimentally have been reproduced and understood: (i) The nonlinear behavior of stopping power versus velocity is a gradual crossover as excitations tail into the d-electron spectrum; and (ii) the low-velocity H/He anomaly (the relative stopping powers are contrary to established theory) is explained by the substantial involvement of the d electrons in the screening of the projectile even at the lowest velocities where the energy loss is generated by s-like electron-hole pair formation only.


Assuntos
Elétrons , Ouro/química , Hélio/química , Hidrogênio/química , Teoria Quântica
16.
Phys Rev Lett ; 108(16): 166802, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22680748

RESUMO

The two-dimensional electron gas at the interface between LaAlO(3) and SrTiO(3) has become one of the most fascinating and highly debated oxide systems of recent times. Here we propose that a one-dimensional electron gas can be engineered at the step edges of the LaAlO(3)/SrTiO(3) interface. These predictions are supported by first-principles calculations and electrostatic modeling which elucidate the origin of the one-dimensional electron gas as an electronic reconstruction to compensate a net surface charge in the step edge. The results suggest a novel route to increasing the functional density in these electronic interfaces.

17.
J Phys Chem A ; 116(30): 8023-30, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22779741

RESUMO

The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved α-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pilin was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's α-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.


Assuntos
Geobacter/química , Subunidades Proteicas/química , Teoria Quântica , Elétrons , Modelos Moleculares , Conformação Proteica
18.
R Soc Open Sci ; 9(5): 212011, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35619995

RESUMO

Modelling the inelastic scattering of electrons in water is fundamental, given their crucial role in biological damage. In Monte Carlo track-structure (MC-TS) codes used to assess biological damage, the energy loss function (ELF), from which cross sections are extracted, is derived from different semi-empirical optical models. Only recently have first ab initio results for the ELF and cross sections in water become available. For benchmarking purpose, in this work, we present ab initio linear-response time-dependent density functional theory calculations of the ELF of liquid water. We calculated the inelastic scattering cross sections, inelastic mean free paths, and electronic stopping power and compared our results with recent calculations and experimental data showing a good agreement. In addition, we provide an in-depth analysis of the contributions of different molecular orbitals, species and orbital angular momenta to the total ELF. Moreover, we present single-differential cross sections computed for each molecular orbital channel, which should prove useful for MC-TS simulations.

19.
J Chem Phys ; 135(15): 154505, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22029322

RESUMO

The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)], as efficiently implemented in the SIESTA code [G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by ≈7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Pópolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007)]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010)]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields.

20.
J Chem Phys ; 134(2): 024516, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21241129

RESUMO

It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Água/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA