Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 150(3): 533-48, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863007

RESUMO

Nephronophthisis-related ciliopathies (NPHP-RC) are degenerative recessive diseases that affect kidney, retina, and brain. Genetic defects in NPHP gene products that localize to cilia and centrosomes defined them as "ciliopathies." However, disease mechanisms remain poorly understood. Here, we identify by whole-exome resequencing, mutations of MRE11, ZNF423, and CEP164 as causing NPHP-RC. All three genes function within the DNA damage response (DDR) pathway. We demonstrate that, upon induced DNA damage, the NPHP-RC proteins ZNF423, CEP164, and NPHP10 colocalize to nuclear foci positive for TIP60, known to activate ATM at sites of DNA damage. We show that knockdown of CEP164 or ZNF423 causes sensitivity to DNA damaging agents and that cep164 knockdown in zebrafish results in dysregulated DDR and an NPHP-RC phenotype. Our findings link degenerative diseases of the kidney and retina, disorders of increasing prevalence, to mechanisms of DDR.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Exoma , Doenças Renais Císticas/genética , Proteínas dos Microtúbulos/metabolismo , Animais , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Genes Recessivos , Humanos , Proteína Homóloga a MRE11 , Camundongos , Proteínas , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
2.
J Med Genet ; 60(2): 134-136, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35772847

RESUMO

BACKGROUND: Imprinting centre 2 (IC2) in the chromosomal region 11p15.5 regulates the monoallelic expression of imprinted genes by differential methylation of paternal and maternal chromosomes. Copy number variants in IC2 are associated with Beckwith-Wiedemann syndrome and Silver-Russell syndrome (SRS). Clinical outcome of IC2 deletions seems to depend on the parental origin of the chromosome, deletion size and inclusion or exclusion of enhancer and promoter regions. RESULTS: A paternally inherited 132 bp deletion within the KCNQ1OT1 gene was found in a proband with an SRS clinical phenotype. The patient's father and paternal grandmother, who both carry the deletion on their maternal chromosome, are unaffected. Review of other IC2 deletions and their associated clinical presentation was useful in understanding the genetic-phenotypic correlation. CONCLUSION: Only six cases have been reported with deletions involving exclusively IC2, one being identical to our proband's 132 bp deletion. Our study, which is based on more extensive segregation data than the previous 132 bp deletion report, confirms the association of this deletion with growth restriction when paternally inherited. Remarkably, even though our patient has the same deletion, he has more pronounced phenotypic features; our findings thus suggest that some degree of clinical variability may be associated with this loss.


Assuntos
Síndrome de Beckwith-Wiedemann , RNA Longo não Codificante , Síndrome de Silver-Russell , Humanos , Masculino , Síndrome de Beckwith-Wiedemann/genética , Metilação de DNA/genética , Impressão Genômica/genética , Fenótipo , Síndrome de Silver-Russell/genética , Feminino , RNA Longo não Codificante/genética
3.
Clin Genet ; 104(6): 713-715, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37612261

RESUMO

This study reports variants in BBS1 and BBS7 in patients with Bardet-Biedl syndrome from the Canadian Maritime provinces. The BBS1 variant NM_024649.5:c.1169T>G was identified as a recurrent variant in Prince Edward Island.


Assuntos
Síndrome de Bardet-Biedl , Proteínas Associadas aos Microtúbulos , Humanos , Canadá , Proteínas Associadas aos Microtúbulos/genética , Mutação , Ilha do Príncipe Eduardo
4.
Am J Med Genet A ; 191(2): 554-558, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308391

RESUMO

Congenital heart defect (CHD) is a birth defect that affects the structure of the heart. Although CHD is often multifactorial, it can also be inherited as part of a Mendelian disorder such as in congenital heart defect and ectodermal dysplasia (CHDED). This disorder is caused by de novo variants in PRKD1. Here, we describe a patient with a novel de novo variant of PRKD1 with phenotypic features consistent with CHDED. Previously unreported features were noted including high intracranial pressure (ICP), partial anomalous pulmonary venous return (PAPVR), and bifid uvula. We suggest that these features may be associated with CHDED.


Assuntos
Fissura Palatina , Displasia Ectodérmica , Cardiopatias Congênitas , Humanos , Pressão Intracraniana , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Displasia Ectodérmica/complicações , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Fenótipo
5.
Am J Med Genet A ; 188(10): 3071-3077, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35875935

RESUMO

Cranioectodermal dysplasia (CED) is rare heterogeneous condition. It belongs to a group of disorders defined as ciliopathies and is associated with defective cilia function and structure. To date six genes have been associated with CED. Here we describe a 4-year-old male CED patient whose features include dolichocephaly, multi-suture craniosynostosis, epicanthus, frontal bossing, narrow thorax, limb shortening, and brachydactyly. The patient presented early-onset chronic kidney disease and was transplanted at the age of 2 years and 5 months. At the age of 3.5 years a retinal degeneration was diagnosed. Targeted sequencing by NGS revealed the presence of compound heterozygous variants in the WDR35 gene. The variants are a novel missense change in exon 9 p.(Gly303Arg) and a previously described nonsense variant in exon 18 p.(Leu641*). Our findings suggest that patients with WDR35 defects may be at risk to develop early-onset retinal degeneration. Therefore, CED patients with pathogenic variation in this gene should be assessed at least once by the ophthalmologist before the age of 4 years to detect early signs of retinal degeneration.


Assuntos
Craniossinostoses , Falência Renal Crônica , Distrofias Retinianas , Osso e Ossos/anormalidades , Pré-Escolar , Craniossinostoses/complicações , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Proteínas do Citoesqueleto/genética , Nanismo , Displasia Ectodérmica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mutação , Osteocondrodisplasias , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética
6.
Am J Med Genet A ; 185(4): 1195-1203, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421337

RESUMO

Cranioectodermal dysplasia (CED) is a rare autosomal recessive disorder primarily characterized by craniofacial, skeletal, and ectodermal abnormalities. CED is a chondrodysplasia, which is part of a spectrum of clinically and genetically heterogeneous diseases that result from disruptions in cilia. Pathogenic variants in genes encoding components of the ciliary transport machinery are known to cause CED. Intra- and interfamilial clinical variability has been reported in a few CED studies and the findings of this study align with these observations. Here, we report on five CED patients from four Polish families with identical compound heterozygous variants [c.1922T>G p.(Leu641Ter) and c.2522A>T; p.(Asp841Val)] in WDR35. The frequent occurrence of both identified changes in Polish CED families suggests that these variants may be founder mutations. Clinical evaluation of the CED patients revealed interfamilial clinical variability among the patients. This includes differences in skeletal and ectodermal features as well as variability in development, progression, and severity of renal and liver insufficiency. This is the first report showing significant interfamilial clinical variability in a series of CED patients from unrelated families with identical compound heterozygous variants in WDR35. Our findings strongly indicate that other genetic and non-genetic factors may modulate the progression and expression of the patients' phenotypes.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/genética , Proteínas do Citoesqueleto/genética , Displasia Ectodérmica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Osso e Ossos/patologia , Criança , Pré-Escolar , Cílios/genética , Cílios/patologia , Craniossinostoses/epidemiologia , Craniossinostoses/patologia , Displasia Ectodérmica/epidemiologia , Displasia Ectodérmica/patologia , Feminino , Humanos , Lactente , Masculino , Mutação/genética , Linhagem , Fenótipo , Polônia/epidemiologia
7.
Am J Hum Genet ; 100(2): 281-296, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132690

RESUMO

EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities.


Assuntos
Anormalidades Musculoesqueléticas/genética , N-Acetilglucosaminiltransferases/genética , Osteocondrodisplasias/genética , Alelos , Linhagem Celular , Linhagem Celular Tumoral , Condroitina/sangue , Condroitina/urina , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Glicosaminoglicanos/metabolismo , Humanos , Anormalidades Musculoesqueléticas/diagnóstico , Mutação de Sentido Incorreto , Osteocondrodisplasias/diagnóstico , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética
8.
Am J Med Genet A ; 182(10): 2417-2425, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32804427

RESUMO

The ciliary chondrodysplasias represent a group of clinically and genetically heterogeneous disorders that affect skeleton development. Cilia are organelles that project from the surface of many cell types and play an important role during prenatal and postnatal human development. Cranioectodermal dysplasia (Sensenbrenner syndrome, CED) is a ciliopathy primarily characterized by craniofacial, skeletal, and ectodermal abnormalities. To date six genes have been associated with CED: IFT122, WDR35, WDR19, IFT140, IFT43, and IFT52. Prenatal diagnosis of CED is challenging, and genetic testing can facilitate making a correct diagnosis. Here, we report on a family with two male siblings affected by CED: a 3.5 year-old patient and his 2 year-old brother. Molecular analysis of the proband at 1 year of age revealed compound heterozygous variants in WDR35: c.3G>A [p.(Met1-Ala30delinsMetfsTer4)] and c.2522A>T [p.(Asp841Val)]. Ultrasound examination during the second pregnancy revealed an increased nuchal translucency of 4.5 mm and a hypoplastic nasal bone at 12 weeks of gestation. Prenatal diagnostic testing was offered because of an increased risk for chromosomal abnormalities and recurrence risk for CED. Prenatal genetic analysis of a chorionic villus sample detected the WDR35 variants previously identified in the elder brother. This is the first report of a prenatal genetic diagnosis in CED.


Assuntos
Osso e Ossos/anormalidades , Craniossinostoses/diagnóstico , Proteínas do Citoesqueleto/genética , Displasia Ectodérmica/diagnóstico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Diagnóstico Pré-Natal , Osso e Ossos/patologia , Pré-Escolar , Craniossinostoses/genética , Craniossinostoses/patologia , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Polônia/epidemiologia
9.
Hum Mol Genet ; 26(23): 4741-4751, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973684

RESUMO

The aim of this work is to identify the molecular cause of autosomal recessive early onset retinal degeneration in a consanguineous pedigree. Seventeen members of a four-generation Pakistani family were recruited and underwent a detailed ophthalmic examination. Exomes of four affected and two unaffected individuals were sequenced. Variants were filtered using exomeSuite to identify rare potentially pathogenic variants in genes expressed in the retina and/or brain and consistent with the pattern of inheritance. Effect of the variant observed in the gene Intraflagellar Transport Protein 43 (IFT43) was studied by heterologous expression in mIMCD3 and MDCK cells. Expression and sub-cellular localization of IFT43 in the retina and transiently transfected cells was examined by RT-PCR, western blot analysis, and immunohistochemistry. Affected members were diagnosed with early onset non-syndromic progressive retinal degeneration and the presence of bone spicules distributed throughout the retina at younger ages while the older affected members showed severe central choroidal atrophy. Whole-exome sequencing analysis identified a novel homozygous c.100 G > A change in IFT43 segregating with retinal degeneration and not present in ethnicity-matched controls. Immunostaining showed IFT43 localized in the photoreceptors, and to the tip of the cilia in transfected mIMCD3 and MDCK cells. The cilia in mIMCD3 and MDCK cells expressing mutant IFT43 were found to be significantly shorter (P < 0.001) than cells expressing wild-type IFT43. Our studies identified a novel homozygous mutation in the ciliary protein IFT43 as the underlying cause of recessive inherited retinal degeneration. This is the first report demonstrating the involvement of IFT43 in retinal degeneration.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Sequência de Bases , Consanguinidade , Exoma , Feminino , Genes Recessivos , Homozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Retina/metabolismo , Retina/fisiologia , Sequenciamento do Exoma/métodos
10.
Hum Mol Genet ; 26(21): 4278-4289, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973161

RESUMO

Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Adulto , Animais , Encéfalo/anormalidades , Córtex Cerebral/metabolismo , Drosophila melanogaster , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Heterozigoto , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Malformações do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Linhagem , Heterotopia Nodular Periventricular/genética , Terminações Pré-Sinápticas , Ratos , Convulsões/metabolismo , Sinapses/metabolismo , Sequenciamento do Exoma
11.
Pediatr Nephrol ; 33(10): 1701-1712, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29974258

RESUMO

BACKGROUND: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling. METHODS: Forty patients from 36 families with nephronophthisis-related ciliopathy were recruited at university medical centers and online. Comprehensive clinical and genotypic data were recorded. Patients without molecular diagnosis were offered genetic analysis. RESULTS: Of 40 patients, 45% had isolated nephronophthisis, 48% syndromic diagnosis, and 7% nephronophthisis with extrarenal features not constituting a recognizable syndrome. Patients developed ESRD at median 13 years (range 5-47). Median age of symptom onset was 9 years in both isolated and syndromic forms (range 5-26 vs. 5-33). Common presenting symptoms were fatigue (42%), polydipsia/polyuria (33%), and hypertension (21%). Renal ultrasound showed small-to-normal-sized kidneys, increased echogenicity (65%), cysts (43%), and abnormal corticomedullary differentiation (32%). Renal biopsies in eight patients showed nonspecific signs of chronic kidney disease (CKD). Twenty-three patients (58%) had genetic diagnosis upon inclusion. Thirteen of those without a genetic diagnosis gave consent for genetic testing, and a cause was identified in five (38%). CONCLUSIONS: Nephronophthisis is genetically and phenotypically heterogeneous and should be considered in children and young adults presenting with persistent fatigue and polyuria, and in all patients with unexplained CKD. As symptom onset can occur into adulthood, presymptomatic monitoring of kidney function in syndromic ciliopathy patients should continue until at least age 30.


Assuntos
Ciliopatias/diagnóstico , Aconselhamento Genético , Testes Genéticos , Doenças Renais Císticas/congênito , Falência Renal Crônica/prevenção & controle , Proteínas Adaptadoras de Transdução de Sinal/genética , Adolescente , Adulto , Idade de Início , Biópsia , Criança , Ciliopatias/complicações , Ciliopatias/genética , Ciliopatias/patologia , Proteínas do Citoesqueleto , Diagnóstico Tardio/prevenção & controle , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Doenças Renais Císticas/complicações , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Falência Renal Crônica/etiologia , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Países Baixos , Sistema de Registros/estatística & dados numéricos , Fatores de Tempo , Ultrassonografia , Sequenciamento do Exoma , Adulto Jovem
12.
J Med Genet ; 54(7): 490-501, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28264986

RESUMO

BACKGROUND: Hydranencephaly is a congenital anomaly leading to replacement of the cerebral hemispheres with a fluid-filled cyst. The goals of this work are to describe a novel autosomal-recessive syndrome that includes hydranencephaly (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly (MARCH)); to identify its genetic cause(s) and to provide functional insight into pathomechanism. METHODS: We used homozygosity mapping and exome sequencing to identify recessive mutations in a single family with three affected fetuses. Immunohistochemistry, RT-PCR and imaging in cell lines, and zebrafish models, were used to explore the function of the gene and the effect of the mutation. RESULTS: We identified a homozygous nonsense mutation in CEP55 segregating with MARCH. Testing the effect of this allele on patient-derived cells indicated both a reduction of the overall CEP55 message and the production of a message that likely gives rise to a truncated protein. Suppression or ablation of cep55l in zebrafish embryos recapitulated key features of MARCH, most notably renal dysplasia, cerebellar hypoplasia and craniofacial abnormalities. These phenotypes could be rescued by full-length but not truncated human CEP55 message. Finally, we expressed the truncated form of CEP55 in human cells, where we observed a failure of truncated protein to localise to the midbody, leading to abscission failure and multinucleated daughter cells. CONCLUSIONS: CEP55 loss of function mutations likely underlie MARCH, a novel multiple congenital anomaly syndrome. This association expands the involvement of centrosomal proteins in human genetic disorders by highlighting a role in midbody function.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/genética , Mitose/genética , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Proteínas Nucleares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Edição de Genes , Humanos , Lactente , Masculino , Modelos Biológicos , Proteínas Nucleares/metabolismo , Linhagem , Fenótipo , Frações Subcelulares/metabolismo , Síndrome , Proteínas de Peixe-Zebra/metabolismo
13.
PLoS Genet ; 11(10): e1005575, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485645

RESUMO

Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models. The precise mechanisms by which CC2D2A and other transition zone proteins control protein entrance into the cilium and how they are linked to vesicular trafficking of incoming cargo remain largely unknown. In this work, we identify the centrosomal protein NINL as a physical interaction partner of CC2D2A. NINL partially co-localizes with CC2D2A at the base of cilia and ninl knockdown in zebrafish leads to photoreceptor outer segment loss, mislocalization of opsins and vesicle accumulation, similar to cc2d2a-/- phenotypes. Moreover, partial ninl knockdown in cc2d2a-/- embryos enhances the retinal phenotype of the mutants, indicating a genetic interaction in vivo, for which an illustration is found in patients from a Joubert Syndrome cohort. Similar to zebrafish cc2d2a mutants, ninl morphants display altered Rab8a localization. Further exploration of the NINL-associated interactome identifies MICAL3, a protein known to interact with Rab8 and to play an important role in vesicle docking and fusion. Together, these data support a model where CC2D2A associates with NINL to provide a docking point for cilia-directed cargo vesicles, suggesting a mechanism by which transition zone proteins can control the protein content of the ciliary compartment.


Assuntos
Cerebelo/anormalidades , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Oxigenases de Função Mista/genética , Proteínas Nucleares/metabolismo , Doenças Renais Policísticas/genética , Proteínas/genética , Retina/anormalidades , Proteínas rab de Ligação ao GTP/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Cerebelo/metabolismo , Cerebelo/patologia , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto , Encefalocele/metabolismo , Encefalocele/patologia , Anormalidades do Olho/genética , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Técnicas de Silenciamento de Genes , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Proteínas Associadas aos Microtúbulos/genética , Oxigenases de Função Mista/metabolismo , Mutação , Proteínas Nucleares/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Transporte Proteico/genética , Proteínas/metabolismo , Retina/metabolismo , Retina/patologia , Retinose Pigmentar , Transdução de Sinais , Peixe-Zebra , Proteínas rab de Ligação ao GTP/metabolismo
14.
Am J Hum Genet ; 95(2): 131-42, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25018096

RESUMO

Exome sequencing revealed a homozygous missense mutation (c.317C>G [p.Arg106Pro]) in POC1B, encoding POC1 centriolar protein B, in three siblings with autosomal-recessive cone dystrophy or cone-rod dystrophy and compound-heterozygous POC1B mutations (c.199_201del [p.Gln67del] and c.810+1G>T) in an unrelated person with cone-rod dystrophy. Upon overexpression of POC1B in human TERT-immortalized retinal pigment epithelium 1 cells, the encoded wild-type protein localized to the basal body of the primary cilium, whereas this localization was lost for p.Arg106Pro and p.Gln67del variant forms of POC1B. Morpholino-oligonucleotide-induced knockdown of poc1b translation in zebrafish resulted in a dose-dependent small-eye phenotype, impaired optokinetic responses, and decreased length of photoreceptor outer segments. These ocular phenotypes could partially be rescued by wild-type human POC1B mRNA, but not by c.199_201del and c.317C>G mutant human POC1B mRNAs. Yeast two-hybrid screening of a human retinal cDNA library revealed FAM161A as a binary interaction partner of POC1B. This was confirmed in coimmunoprecipitation and colocalization assays, which both showed loss of FAM161A interaction with p.Arg106Pro and p.Gln67del variant forms of POC1B. FAM161A was previously implicated in autosomal-recessive retinitis pigmentosa and shown to be located at the base of the photoreceptor connecting cilium, where it interacts with several other ciliopathy-associated proteins. Altogether, this study demonstrates that POC1B mutations result in a defect of the photoreceptor sensory cilium and thus affect cone and rod photoreceptors.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas do Olho/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Sequência de Aminoácidos , Animais , Corpos Basais , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Exoma/genética , Proteínas do Olho/genética , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Dados de Sequência Molecular , Morfolinos/genética , Mutação de Sentido Incorreto , Países Baixos , Cílio Conector dos Fotorreceptores/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Análise de Sequência de DNA , Turquia , Transtornos da Visão/genética , Peixe-Zebra
15.
Am J Hum Genet ; 93(5): 932-44, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24183451

RESUMO

Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.


Assuntos
Proteínas de Transporte/genética , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Povo Asiático/genética , Axonema/genética , Criança , Chlamydomonas/genética , Cílios/genética , Cílios/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Síndrome de Ellis-Van Creveld/patologia , Exoma , Éxons , Humanos , Lactente , Recém-Nascido , Mutação , Conformação Proteica , Proteômica , População Branca/genética
16.
Am J Med Genet A ; 170(6): 1566-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26892345

RESUMO

We report an 11-year-old girl with mild intellectual disability, skeletal anomalies, congenital heart defect, myopia, and facial dysmorphisms including an extra incisor, cup-shaped ears, and a preauricular skin tag. Array comparative genomic hybridization analysis identified a de novo 4.5-Mb microdeletion on chromosome 14q24.2q24.3. The deleted region and phenotype partially overlap with previously reported patients. Here, we provide an overview of the literature on 14q24 microdeletions and further delineate the associated phenotype. We performed exome sequencing to examine other causes for the phenotype and queried genes present in the 14q24.2q24.3 microdeletion that are associated with recessive disease for variants in the non-deleted allele. The deleted region contains 65 protein-coding genes, including the ciliary gene IFT43. Although Sanger and exome sequencing did not identify variants in the second IFT43 allele or in other IFT complex A-protein-encoding genes, immunocytochemistry showed increased accumulation of IFT-B proteins at the ciliary tip in patient-derived fibroblasts compared to control cells, demonstrating defective retrograde ciliary transport. This could suggest a ciliary defect in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte/genética , Deleção Cromossômica , Cromossomos Humanos Par 14 , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Miopia/genética , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Criança , Hibridização Genômica Comparativa , Exoma , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
17.
Nat Genet ; 39(7): 882-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558407

RESUMO

Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-Løken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doenças Cerebelares/genética , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Oftalmopatias/genética , Nefropatias/genética , Proteínas/genética , Proteínas/metabolismo , Adulto , Animais , Linhagem Celular , Proteínas do Citoesqueleto , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Ratos , Síndrome
18.
Nat Genet ; 39(7): 889-95, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17546029

RESUMO

Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA. In a sixth family, the LCA5 transcript was completely absent. LCA5 is expressed widely throughout development, although the phenotype in affected individuals is limited to the eye. Lebercilin localizes to the connecting cilia of photoreceptors and to the microtubules, centrioles and primary cilia of cultured mammalian cells. Using tandem affinity purification, we identified 24 proteins that link lebercilin to centrosomal and ciliary functions. Members of this interactome represent candidate genes for LCA and other ciliopathies. Our findings emphasize the emerging role of disrupted ciliary processes in the molecular pathogenesis of LCA.


Assuntos
Proteínas do Olho/genética , Proteínas Associadas aos Microtúbulos/genética , Atrofia Óptica Hereditária de Leber/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Cílios/genética , Códon sem Sentido , Proteínas do Olho/metabolismo , Feminino , Mutação da Fase de Leitura , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Linhagem , Ratos , Ratos Wistar
19.
Am J Hum Genet ; 90(5): 864-70, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22503633

RESUMO

Mainzer-Saldino syndrome (MSS) is a rare disorder characterized by phalangeal cone-shaped epiphyses, chronic renal failure, and early-onset, severe retinal dystrophy. Through a combination of ciliome resequencing and Sanger sequencing, we identified IFT140 mutations in six MSS families and in a family with the clinically overlapping Jeune syndrome. IFT140 is one of the six currently known components of the intraflagellar transport complex A (IFT-A) that regulates retrograde protein transport in ciliated cells. Ciliary abundance and localization of anterograde IFTs were altered in fibroblasts of affected individuals, a result that supports the pivotal role of IFT140 in proper development and function of ciliated cells.


Assuntos
Proteínas de Transporte/genética , Ataxia Cerebelar/genética , Mutação , Retinose Pigmentar/genética , Adolescente , Alelos , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Linhagem , Transporte Proteico/genética
20.
Am J Hum Genet ; 89(5): 634-43, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22019273

RESUMO

A subset of ciliopathies, including Sensenbrenner, Jeune, and short-rib polydactyly syndromes are characterized by skeletal anomalies accompanied by multiorgan defects such as chronic renal failure and retinitis pigmentosa. Through exome sequencing we identified compound heterozygous mutations in WDR19 in a Norwegian family with Sensenbrenner syndrome. In a Dutch family with the clinically overlapping Jeune syndrome, a homozygous missense mutation in the same gene was found. Both families displayed a nephronophthisis-like nephropathy. Independently, we also identified compound heterozygous WDR19 mutations by exome sequencing in a Moroccan family with isolated nephronophthisis. WDR19 encodes IFT144, a member of the intraflagellar transport (IFT) complex A that drives retrograde ciliary transport. We show that IFT144 is absent from the cilia of fibroblasts from one of the Sensenbrenner patients and that ciliary abundance and morphology is perturbed, demonstrating the ciliary pathogenesis. Our results suggest that isolated nephronophthisis, Jeune, and Sensenbrenner syndromes are clinically overlapping disorders that can result from a similar molecular cause.


Assuntos
Cílios , Displasia Ectodérmica/genética , Mutação de Sentido Incorreto , Doenças Renais Policísticas/genética , Proteínas/genética , Síndrome de Costela Curta e Polidactilia/genética , Doenças Torácicas/genética , Adolescente , Adulto , Criança , Cílios/genética , Cílios/patologia , Anormalidades Craniofaciais/genética , Proteínas do Citoesqueleto , Exoma/genética , Feminino , Fibroblastos/metabolismo , Flagelos/genética , Flagelos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Dados de Sequência Molecular , Marrocos , Países Baixos , Noruega , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Doenças Renais Policísticas/congênito , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA