RESUMO
BACKGROUND: Implantable Cardiac Monitors (ICMs) are used for long-term monitoring of arrhythmias. BIOMONITOR III is a novel ICM with a miniaturized profile, long sensing vector due to a flexible antenna, simplified implantation with a dedicated insertion tool for pocket formation and ICM placement in a single step, and daily automatic Home Monitoring (HM) function. METHODS: In 47 patients undergoing BIOMONITOR III insertion for any ICM indication, 16 investigators at 10 Australian sites assessed handling characteristics of the insertion tool, R-wave amplitudes, noise burden, P-wave visibility, and HM transmission success. Patients were followed for 1 month. RESULTS: All 47 attempted insertions were successful. Median time from skin incision to removal of the insertion tool after ICM insertion was 39 s (IQR 19-65) and to wound closure and cleaning was 4.7 min (IQR 3.5-7.8). All aspects of the insertion tool were rated as "good" or "excellent" in ≥97.9% and "fair" in ≤2.1% of patients, except for "force needed for tunnelling" (91.5% good/excellent, 8.5% fair). Based on HM data, R-waves in the first month were stable at 0.70 ± 0.37 mV. Median noise burden (disabling automatic rhythm evaluation) was 0.19% (IQR 0.00-0.93), equivalent to 2.7 min (IQR 0.0-13.4) per day. In HM-transmitted ECG strips with regular sinus rhythm, P-waves were visible in 89 ± 24% of heart cycles. Patient-individual automatic Home Monitoring transmission success was 98.0% ± 5.5%. CONCLUSIONS: The novel ICM performed well in all aspects studied, including fast insertion, reliable R-wave sensing, good P-wave visibility, and highly successful HM transmissions.
Assuntos
Eletrocardiografia Ambulatorial , Eletrocardiografia , Arritmias Cardíacas/diagnóstico , Austrália , HumanosRESUMO
Detecting epigenetically modified (EM) bases is crucial for disease detection, biosensing, and DNA sequencing. Two-dimensional P-doped Si2BN and BN sheets are used as sensing substrates in density functional theory (DFT) studies. Both the sheets are doped with a phosphorous atom at various atomic sites to examine the sheet's potential in detecting 5-hydroxymethylcytosine (5hmc), 5-methylcytosine (5mc), 7-methylguanine (7â¯mg) and 8-oxoguanine (8oxg) bases. Doping of the P atom in the Si2BN sheet improves the adsorption energy (Ead) of Ab+5hmc (-107.16â¯kcal/mol) and Ab+5mc (-78.36â¯kcal/mol), As+7â¯mg (-84.31â¯kcal/mol) in the gas and aqueous phase Ab+5hmc (-93.28â¯kcal/mol), An+7â¯mg (-78.92â¯kcal/mol) and As+5mc (-77.52â¯kcal/mol) respectively. Standard deviation (θ) indicates that As complexes have high θ values ranging from 4.55 to 37.77, suggesting a high likelihood of distinguishing the bases. The P-doped BN complexes exhibit noticeable work functional shifting (ΔÏ%) recommended that they can be used as Ï-based sensors. Time-dependent DFT results suggest that when EM bases interact with P-doped Si2BN complexes, significant blue shifts (hypsochromic) and red shifts (bathochromic) are observed in the visible and near-infrared spectrum. Hence, the above finding suggests that P-doped Si2BN sheets are highly effective for sensing EM bases and are recommended for DNA/RNA sequencing applications.
RESUMO
This study addresses the urgent need to focus on the nitrite reduction reaction (NO2-RR) to ammonia (NH3). A ternary-metal Prussian blue analogue (CoCuFe-PBA) was utilized as the template material, leveraging its tunable electronic properties to synthesize CoCuFe oxide (CoCuFe-O) through controlled calcination. Subsequently, a CoCuFe alloy (CoCuFe-A) was obtained via pulsed laser irradiation in liquids. The electrochemical properties of CoCuFe-O, derived from the PBA crystal structure, demonstrated a high yield of NH4+ at a rate of 555.84 µmol h-1 cm-2, with the highest Faradaic efficiency of 91.8% and a selectivity of 97.3% during a 1-h NO2-RR under an optimized potential of -1.0 V vs. Ag/AgCl. In situ Raman spectroscopy revealed the collaborative role of redox pairs (Co3+/Co2+ and Fe3+/Fe2+) as proton (H+) suppliers, with Cu centers serving as NO2- binders, thereby enhancing the reaction rate. Additionally, theoretical studies confirmed that Fe and Co atoms are more reactive than Cu toward intermediates playing crucial roles in hydrogenation, while Cu primarily activates NO owing to hydrogenation by the Fe and Co atoms and a high kinetic barrier in H2O* adsorption. This comprehensive investigation provides valuable insights into the electrochemical NO2-RR, establishing a foundation for efficient and sustainable NH3 synthesis strategies.