Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glycoconj J ; 39(3): 381-392, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35441968

RESUMO

Bacterial capsular polysaccharide vaccines are generally poorly immunogenic in infants and older adults. The immunogenicity of capsular polysaccharide vaccines can be improved by conjugating them to immunogenic carrier proteins. One of the most recently licensed conjugate vaccines is the quadrivalent meningococcal vaccine with serogroups A, C, Y, and W conjugated to a tetanus toxoid protein carrier (MenACYW-TT; MenQuadfi, Sanofi Pasteur, Swiftwater, PA, USA). MenACYW-TT was developed to induce optimal immune responses against each of the meningococcal serogroups A, C, W, and Y, and across all age groups, especially infants and older adults (those aged ≥ 50 years). Here, we detail the early iterative vaccine development approach taken, whereby many different 'small-scale' conjugate vaccine candidates were prepared and examined for immunogenicity in a mouse model to identify the most immunogenic vaccine. Additional insights from phase I clinical studies informed further optimization of the vaccine candidates by tailoring their conjugation parameter attributes for the optimal immune response in humans. The parameters studied included: different carrier proteins [PR]; polysaccharide [PS] sizes; conjugation chemistries [linker vs. no-linker; lattice vs. neoglycoprotein; activation/derivatization levels]; conjugate size; PS:PR loading ratio; percent free PS; percent free PR; and O-acetylation content. The lead quadrivalent conjugate vaccine (polysaccharides of > 50 kDa size conjugated to TT at a high PS:PR ratio via reductive amination for serogroups C, W and Y, and carbonyldiimidazole/adipic acid dihydrazide linker chemistry for serogroup A) empirically identified from the extensive preclinical studies, was ultimately confirmed by the robust antibody responses observed in all age groups in the various clinical studies, including in the most challenging infant and older adult age groups, and subsequently led to the licensed formulation.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Idoso , Animais , Anticorpos Antibacterianos , Proteínas de Transporte , Humanos , Infecções Meningocócicas/prevenção & controle , Camundongos , Polissacarídeos , Toxoide Tetânico , Vacinas Combinadas , Vacinas Conjugadas
2.
Vaccines (Basel) ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675778

RESUMO

The optimal immune response eliminates invading pathogens, restoring immune equilibrium without inflicting undue harm to the host. However, when a cascade of immunological reactions is triggered, the immune response can sometimes go into overdrive, potentially leading to harmful long-term effects or even death. The immune system is triggered mostly by infections, allergens, or medical interventions such as vaccination. This review examines how these immune triggers differ and why certain infections may dysregulate immune homeostasis, leading to inflammatory or allergic pathology and exacerbation of pre-existing conditions. However, many vaccines generate an optimal immune response and protect against the consequences of pathogen-induced immunological aggressiveness, and from a small number of unrelated pathogens and autoimmune diseases. Here, we propose an "immuno-wave" model describing a vaccine-induced "Goldilocks immunity", which leaves fine imprints of both pro-inflammatory and anti-inflammatory milieus, derived from both the innate and the adaptive arms of the immune system, in the body. The resulting balanced, 'quiet alert' state of the immune system may provide a jump-start in the defense against pathogens and any associated pathological inflammatory or allergic responses, allowing vaccines to go above and beyond their call of duty. In closing, we recommend formally investigating and reaping many of the secondary benefits of vaccines with appropriate clinical studies.

3.
Front Immunol ; 14: 1128683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457687

RESUMO

Potency testing and release of annual influenza vaccines require preparation, calibration, and distribution of reference antigens (RAs) and antisera every year, which takes an average of 8 to 12 weeks, and can be a major limiting factor in pandemic situations. Here we describe for the first time a robust Surface Plasmon Resonance (SPR)-based method that employs influenza subtype or lineage hemagglutinin (HA) specific monoclonal antibodies (mAbs) to measure the HA concentration in influenza multivalent vaccines. Implementing such an advanced test method will at the very least eliminate the rate-limiting and laborious efforts of making antisera reagents annually, and thus expedite the influenza vaccine delivery to the public by at least 6 weeks. Results demonstrate that the SPR-based method, developed using Biacore, is robust and not influenced by the type of RAs (inactivated whole virus, split, or subunit vaccine-derived materials), whether they are used as monovalent or multivalent preparations. HA concentrations obtained for monovalent drug substances (DS) or quadrivalent drug products (DP) of inactivated influenza split vaccine showed a tight correlation (the best fit value for the slope is 1.001 with R2 of 0.9815 and P-value <0.0001) with the corresponding values obtained by the current potency assay, Single Radial Immunodiffusion (SRID). Supplementary analysis of the results by the Bland-Altman plot demonstrated good agreement between the SPR and SRID methods, with no consistent bias of the SPR versus SRID method. We further demonstrate that the SPR-based method can be used to estimate HA concentrations in intermediates of the influenza vaccine manufacturing process containing varying matrices and impurity levels. Further, the results demonstrate that the method is sensitive to detecting degradation of HA caused by elevated temperature, low pH, and freezing. It is evident from this report and other published work that the advancement of analytical techniques and the early findings are encouraging for the implementation of alternate potency assays with far-reaching benefits covering both seasonal and pandemic influenza.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/prevenção & controle , Anticorpos Monoclonais , Ressonância de Plasmônio de Superfície , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Antivirais , Soros Imunes , Vacinas de Produtos Inativados
4.
Vaccine ; 41(32): 4639-4647, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37344260

RESUMO

Determination of the potency of a vaccine is critical to ensuring that an appropriate dose is delivered, lot-to-lot consistency is maintained, and that the formulation is stable over the life of the vaccine. The potency of inactivated influenza vaccines is determined routinely by the Single Radial Immunodiffusion (SRID) assay. A number of alternative potency assays have been proposed and have been under evaluation in recent years. The aim of this study was to compare a surface plasmon resonance-based assay and two different enzyme linked immunoassays against the current potency assay, SRID, and against mouse immunogenicity when haemagglutinin antigen of the A(H1N1)pdm09 component of an inactivated influenza vaccine is stressed by elevated temperature, low pH and freezing. This analysis demonstrated that the alternative assays had good correspondence with SRID for samples from most stress conditions and that the immunogenicity in mice corresponded with potency in SRID for all stress samples. Subject to further analysis, the assays have been shown to have the potential to possibly replace, and at least complement, SRID.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Vacinas de Produtos Inativados , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Influenza Humana/prevenção & controle , Potência de Vacina
5.
Front Immunol ; 13: 814088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126397

RESUMO

The identification of an appropriate animal model for use in the development of meningococcal vaccines has been a challenge as humans are the only natural host for Neisseria meningitidis. Small animal models have been developed and are widely used to study the efficacy or immunogenicity of vaccine formulations generated against various diseases. Here, we describe the development and optimization of a mouse model for assessing the immunogenicity of candidate tetravalent meningococcal polysaccharide (MenACYW-TT) protein conjugate vaccines. Three inbred (BALB/c [H-2d], C3H/HeN [H-2k], or C57BL/6 [H-2b]) and one outbred (ICR [H-2g7]) mouse strains were assessed using serial two-fold dose dilutions (from 2 µg to 0.03125 µg per dose of polysaccharide for each serogroup) of candidate meningococcal conjugate vaccines. Groups of 10 mice received two doses of the candidate vaccine 14 days apart with serum samples obtained 14 days after the last dose for the evaluation of serogroup-specific anti-polysaccharide IgG by ELISA and bactericidal antibody by serum bactericidal assay (SBA). C3H/HeN and ICR mice had a more dose-dependent antibody response to all four serogroups than BALB/c and C57Bl/6 mice. In general, ICR mice had the greatest antibody dose-response range (both anti-polysaccharide IgG and bactericidal antibodies) to all four serogroups and were chosen as the model of choice. The 0.25 µg per serogroup dose was chosen as optimal since this was in the dynamic range of the serogroup-specific dose-response curves in most of the mouse strains evaluated. We demonstrate that the optimized mouse immunogenicity model is sufficiently sensitive to differentiate between conjugated polysaccharides, against unconjugated free polysaccharides and, to degradation of the vaccine formulations. Following optimization, this optimized mouse immunogenicity model has been used to assess the impact of different conjugation chemistries on immunogenicity, and to screen and stratify various candidate meningococcal conjugate vaccines to identify those with the most desirable profile to progress to clinical trials.


Assuntos
Anticorpos Antibacterianos/sangue , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Animais , Feminino , Imunogenicidade da Vacina , Infecções Meningocócicas/veterinária , Vacinas Meningocócicas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Modelos Animais , Sorogrupo , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
6.
NPJ Vaccines ; 6(1): 144, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857771

RESUMO

The influenza vaccine field has been constantly evolving to improve the speed, scalability, and flexibility of manufacturing, and to improve the breadth and longevity of the protective immune response across age groups, giving rise to an array of next generation vaccines in development. Among these, the recombinant influenza vaccine tetravalent (RIV4), using a baculovirus expression vector system to express recombinant haemagglutinin (rHA) in insect cells, is the only one to have reached the market and has been studied extensively. We describe how the unique structural features of rHA in RIV4 improve protective immune responses compared to conventional influenza vaccines made from propagated influenza virus. In addition to the sequence integrity, characteristic of recombinant proteins, unique post-translational processing of the rHA in insect cells instills favourable tertiary and quaternary structural features. The absence of protease-driven cleavage and addition of simple N-linked glycans help to preserve and expose certain conserved epitopes on HA molecules, which are likely responsible for the high levels of broadly cross-reactive and protective antibodies with rare specificities observed with RIV4. Furthermore, the presence of uniform compact HA oligomers and absence of egg proteins, viral RNA or process impurities, typically found in conventional vaccines, are expected to eliminate potential adverse reactions to these components in susceptible individuals with the use of RIV4. These distinct structural features and purity of the recombinant HA vaccine thus provide a number of benefits in vaccine performance which can be extended to other viral targets, such as for COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA