Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 18(2): 387-399, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30480699

RESUMO

Growth in high relative air humidity (RH, >85%) affects plant morphology and causes diminished response to stomatal closing signals. Many greenhouses are prone to high RH conditions, which may negatively affect production and post-harvest quality. UV radiation induces stomatal closure in several species, and facilitates disease control. We hypothesised that UV exposure may trigger stomatal closure in pea plants (Pisum sativum) grown in high RH, thereby restoring stomatal function. The effects of UV exposure were tested on plants grown in moderate (60%) or high (90%) RH. UV exposure occurred at night, according to a disease control protocol. Lower stomatal conductance rates were found in UV-exposed plants, though UV exposure did not improve the rate of response to closing stimuli or desiccation tolerance. UV-exposed plants showed leaf curling, chlorosis, necrosis, and DNA damage measured by the presence of cyclobutane pyrimidine dimers (CPD), all of which were significantly greater in high RH plants. These plants also had lower total flavonoid content than moderate RH plants, and UV-exposed plants had less than controls. Plants exposed to UV had a higher content of cuticular layer uronic compounds than control plants. However, high RH plants had a higher relative amount of cuticular waxes, but decreased proteins and uronic compounds. Plants grown in high RH had reduced foliar antioxidant power compared to moderate RH. These results indicate that high RH plants were more susceptible to UV-induced damage than moderate RH plants due to reduced flavonoid content and oxidative stress defence.


Assuntos
Ar , Antioxidantes/metabolismo , Dano ao DNA , Flavonoides/metabolismo , Umidade , Pisum sativum/efeitos da radiação , Folhas de Planta/efeitos da radiação , Pisum sativum/genética , Pisum sativum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
2.
Plant Cell Environ ; 36(2): 382-92, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22812416

RESUMO

Plants developed under high (90%) relative air humidity (RH) have previously been shown to have large, malfunctioning stomata, which results in high water loss during desiccation and reduced dark induced closure. Stomatal movement is to a large extent regulated by abscisic acid (ABA). It has therefore been proposed that low ABA levels contribute to the development of malfunctioning stomata. In this study, we investigated the regulation of ABA content in rose leaves, through hormone analysis and ß-glucosidase quantification. Compared with high RH, rose plants developed in moderate RH (60%) and 20 h photoperiod contained higher levels of ABA and ß-glucosidase activity. Also, the amount of ABA increased during darkness simultaneously as the ABA-glucose ester (GE) levels decreased. In contrast, plants developed under high RH with 20 h photoperiod showed no increase in ABA levels during darkness, and had low ß-glucosidase activity converting ABA-GE to ABA. Continuous lighting (24 h) resulted in low levels of ß-glucosidase activity irrespective of RH, indicating that a dark period is essential to activate ß-glucosidase. Our results provide new insight into the regulation of ABA under different humidities and photoperiods, and clearly show that ß-glucosidase is a key enzyme regulating the ABA pool in rose plants.


Assuntos
Ácido Abscísico/metabolismo , Ar , Umidade , Luz , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Rosa/fisiologia , Ritmo Circadiano/efeitos da radiação , Escuridão , Dessecação , Fotoperíodo , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Rosa/efeitos da radiação , beta-Glucosidase/metabolismo
3.
J Plant Physiol ; 211: 63-69, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161560

RESUMO

Previous studies have shown that plants developed under high relative air humidity (RH>85%) develop malfunctioning stomata and therefor have increased transpiration and reduced desiccation tolerance when transferred to lower RH conditions and darkness. In this study, plants developed at high RH were exposed to daily VPD fluctuations created by changes in temperature and/or RH to evaluate the potential improvements in stomatal functioning. Daily periods with an 11°C temperature increase and consequently a VPD increase (vpd: 0.36-2.37KPa) reduced the stomatal apertures and improved the stomatal functionality and desiccation tolerance of the rosette plant Arabidopsis thaliana. A similar experiment was performed with only a 4°C temperature increase and/or a RH decrease on tomato. The results showed that a daily change in VPD (vpd: 0.36-1.43KPa) also resulted in improved stomatal responsiveness and decreased water usage during growth. In tomato, the most effective treatment to increase the stomatal responsiveness to darkness as a signal for closure was daily changes in RH without a temperature increase.


Assuntos
Ar , Arabidopsis/fisiologia , Escuridão , Dessecação , Umidade , Estômatos de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Pressão de Vapor , Temperatura , Água
4.
Funct Plant Biol ; 42(4): 376-386, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480682

RESUMO

High relative air humidity (RH) promotes stomatal opening in tomato leaves. This study examined the role of the plant hormones abscisic acid (ABA) and ethylene in high RH induced stomatal opening. Plants were grown in high (90%) and moderate (60%) RH or transferred from moderate to high RH. ABA levels were only slightly, but significantly decreased during darkness by increasing RH. However, a significantly higher ethylene evolution was found in high RH compared with moderate RH. Ethephon increased conductance and stomatal aperture in moderate RH. Treatment with amino-ethoxyvinylglycine (AVG) suppressed stomatal opening when plants were transferred from moderate to high RH. Similarly, blocking the ethylene receptor or using an ethylene-insensitive mutant (NR) reduced the response to high RH. These results demonstrate that both ethylene production and sensitivity play a role in high RH-induced stomatal opening in tomato leaves. The increased conductance found when plants were transferred to high RH could be counteracted by exogenous ABA spray. The ABA deficient mutant 'Flacca' produced high levels of ethylene irrespective of the RH and the difference in water loss and conductance between high and moderate grown 'Flacca' plants was attenuated compared with WT. The results indicate that both ABA and ethylene play a role in air humidity control of stomatal movement in tomato.

5.
Plant Signal Behav ; 9(7): e29192, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763494

RESUMO

Plants developed under constant high (> 85%) relative air humidity (RH) have larger stomata that are unable to close completely. One of the hypotheses for the less responsive stomata is that the plants have reduced sensitivity to abscisic acid (ABA). Both ABA and darkness are signals for stomatal closure and induce the production of the secondary messenger hydrogen peroxide (H2O2). In this study, the ability of Vicia faba plants developed in moderate or high RH to close the stomata in response to darkness, ABA and H2O2 was investigated. Moreover, the ability of the plants to produce H2O2 when treated with ABA or transferred to darkness was also assessed. Our results show that the ABA concentration in moderate RH is not increased during darkness even though the stomata are closing. This indicates that stomatal closure in V. faba during darkness is independent of ABA production. ABA induced both H2O2 production and stomatal closure in stomata formed at moderate RH. H2O2 production, as a result of treatment with ABA, was also observed in stomata formed at high RH, though the closing response was considerably smaller as compared with moderate RH. In either RH, leaf ABA concentration was not affected by darkness. Similarly to ABA treatment, darkness elicited both H2O2 production and stomatal closure following plant cultivation at moderate RH. Contrary to this, neither H2O2 production nor stomatal closure took place when stomata were formed at high RH. These results suggest that the reduced stomatal response in plants developed in continuous high RH is caused by one or more factors downstream of H2O2 in the signaling pathway toward stomatal closure.


Assuntos
Ácido Abscísico/metabolismo , Escuridão , Umidade , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/metabolismo , Transpiração Vegetal , Vicia faba/fisiologia , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transdução de Sinais , Vapor , Vicia faba/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA