Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Immunol ; 201(2): 481-492, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884702

RESUMO

The mechanistic/mammalian target of rapamycin (mTOR) has emerged as a critical integrator of signals from the immune microenvironment capable of regulating T cell activation, differentiation, and function. The precise role of mTOR in the control of regulatory T cell (Treg) differentiation and function is complex. Pharmacologic inhibition and genetic deletion of mTOR promotes the generation of Tregs even under conditions that would normally promote generation of effector T cells. Alternatively, mTOR activity has been observed to be increased in Tregs, and the genetic deletion of the mTOR complex 1 (mTORC1)-scaffold protein Raptor inhibits Treg function. In this study, by employing both pharmacologic inhibitors and genetically altered T cells, we seek to clarify the role of mTOR in Tregs. Our studies demonstrate that inhibition of mTOR during T cell activation promotes the generation of long-lived central Tregs with a memory-like phenotype in mice. Metabolically, these central memory Tregs possess enhanced spare respiratory capacity, similar to CD8+ memory cells. Alternatively, the generation of effector Tregs (eTregs) requires mTOR function. Indeed, genetic deletion of Rptor leads to the decreased expression of ICOS and PD-1 on the eTregs. Overall, our studies define a subset of mTORC1hi eTregs and mTORC1lo central Tregs.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Feminino , Memória Imunológica/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Proteína Regulatória Associada a mTOR/imunologia
2.
J Immunol ; 198(10): 3939-3948, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28424242

RESUMO

CD4+ T cells lacking the mTORC1 activator Rheb fail to secrete IFN-γ under Th1 polarizing conditions. We hypothesized that this phenotype is due to defects in regulation of the canonical Th1 transcription factor T-bet at the level of protein phosphorylation downstream of mTORC1. To test this hypothesis, we employed targeted mass-spectrometry proteomic analysis-multiple reaction monitoring mass spectrometry. We used this method to detect and quantify predicted phosphopeptides derived from T-bet. By analyzing activated murine wild-type and Rheb-deficient CD4+ T cells, as well as murine CD4+ T cells activated in the presence of rapamycin, a pharmacologic inhibitor of mTORC1, we were able to identify six T-bet phosphorylation sites. Five of these are novel, and four sites are consistently dephosphorylated in both Rheb-deficient CD4+ T cells and T cells treated with rapamycin, suggesting mTORC1 signaling controls their phosphorylation. Alanine mutagenesis of each of the six phosphorylation sites was tested for the ability to impair IFN-γ expression. Single phosphorylation site mutants still support induction of IFN-γ expression; however, simultaneous mutation of three of the mTORC1-dependent sites results in significantly reduced IFN-γ expression. The reduced activity of the triple mutant T-bet is associated with its failure to recruit chromatin remodeling complexes to the Ifng gene promoter. These results establish a novel mechanism by which mTORC1 regulates Th1 differentiation, through control of T-bet phosphorylation.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas com Domínio T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células Th1/fisiologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Interferon gama/biossíntese , Interferon gama/genética , Interferon gama/imunologia , Espectrometria de Massas/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Mutação , Fosforilação , Proteômica/métodos , Sirolimo/farmacologia , Proteínas com Domínio T/química , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Células Th1/imunologia , Células Th2/imunologia
3.
Immunohorizons ; 7(6): 493-507, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37358498

RESUMO

In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.


Assuntos
Calicreínas , Linfócitos T , Animais , Camundongos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Adipócitos Bege , Linfócitos T/metabolismo , Calicreínas/metabolismo , Glicemia/metabolismo , Resistência à Insulina
4.
Cell Chem Biol ; 30(6): 618-631.e12, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290440

RESUMO

Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.


Assuntos
Transtornos Mieloproliferativos , Humanos , Mutação , Transtornos Mieloproliferativos/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
5.
Sci Immunol ; 7(71): eabh4271, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622902

RESUMO

Memory CD8+ T cells are characterized by their ability to persist long after the initial antigen encounter and their capacity to generate a rapid recall response. Recent studies have identified a role for metabolic reprogramming and mitochondrial function in promoting the longevity of memory T cells. However, detailed mechanisms involved in promoting their rapid recall response are incompletely understood. Here, we identify a role for the initial and continued activation of the trifunctional rate-limiting enzyme of the de novo pyrimidine synthesis pathway CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase) as critical in promoting the rapid recall response of previously activated CD8+ T cells. We found that CAD was rapidly phosphorylated upon naïve T cell activation in an mTORC1-dependent manner, yet remained phosphorylated long after initial activation. Previously activated CD8+ T cells displayed continued de novo pyrimidine synthesis in the absence of mitogenic signals, and interfering with this pathway diminished the speed and magnitude of cytokine production upon rechallenge. Inhibition of CAD did not affect cytokine transcript levels but diminished available pre-rRNA (ribosomal RNA), the polycistronic rRNA precursor whose synthesis is the rate-limiting step in ribosomal biogenesis. CAD inhibition additionally decreased levels of detectable ribosomal proteins in previously activated CD8+ T cells. Conversely, overexpression of CAD improved both the cytokine response and proliferation of memory T cells. Overall, our studies reveal a critical role for CAD-induced pyrimidine synthesis and ribosomal biogenesis in promoting the rapid recall response characteristic of memory T cells.


Assuntos
Aspartato Carbamoiltransferase , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Citocinas , Pirimidinas
6.
Sci Adv ; 8(46): eabq5925, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383674

RESUMO

6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Diazo-Oxo-Norleucina/farmacologia , Diazo-Oxo-Norleucina/uso terapêutico , Glutamina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico
7.
J Clin Invest ; 130(7): 3865-3884, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324593

RESUMO

Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.


Assuntos
Imunidade Celular , Macrófagos/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Microambiente Tumoral/imunologia , Animais , Feminino , Glutamina/imunologia , Imunoterapia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Supressoras Mieloides/patologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
8.
Science ; 366(6468): 1013-1021, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31699883

RESUMO

The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a "metabolic checkpoint" for tumor immunotherapy.


Assuntos
Compostos Azo/farmacologia , Caproatos/farmacologia , Glutamina/metabolismo , Imunoterapia Adotiva , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Evasão Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético , Feminino , Glucose/metabolismo , Glutamina/antagonistas & inibidores , Memória Imunológica , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Microambiente Tumoral
9.
Cell Rep ; 20(10): 2439-2454, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877476

RESUMO

Tissue-resident macrophages play critical roles in sentinel and homeostatic functions as well as in promoting inflammation and immunity. It has become clear that the generation of these cells is highly dependent upon tissue-specific cues derived from the microenvironment that, in turn, regulate unique differentiation programs. Recently, a role for GATA6 has emerged in the differentiation programming of resident peritoneal macrophages. We identify a critical role for mTOR in integrating cues from the tissue microenvironment in regulating differentiation and metabolic reprogramming. Specifically, inhibition of mTORC2 leads to enhanced GATA6 expression in a FOXO1 dependent fashion. Functionally, inhibition of mTORC2 promotes peritoneal resident macrophage generation in the resolution phase during zymosan-induced peritonitis. Also, mTORC2-deficient peritoneal resident macrophages displayed increased functionality and metabolic reprogramming. Notably, mTORC2 activation distinguishes tissue-resident macrophage proliferation and differentiation from that of M2 macrophages. Overall, our data implicate a selective role for mTORC2 in the differentiation of tissue-resident macrophages.


Assuntos
Macrófagos Peritoneais/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Peritonite/metabolismo , Animais , Feminino , Citometria de Fluxo , Proteína Forkhead Box O1/metabolismo , Fator de Transcrição GATA6/metabolismo , Immunoblotting , Macrófagos/metabolismo , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Fagocitose/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Zimosan/toxicidade
10.
Oncotarget ; 5(4): 1062-70, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24658085

RESUMO

Non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancer cases, and almost half of newly diagnosed patients have metastatic disease. Pemetrexed is a widely used drug for NSCLC and inhibits several folate-dependent enzymes including thymidylate synthase (TS). Increased expression of TS confers resistance to pemetrexed in vitro and predicts poor response to pemetrexed. Rapamycin is an mTOR inhibitor and suppresses cap-dependent synthesis of specific mRNA species. Here, we show that the combination of rapamycin and pemetrexed synergistically inhibits proliferation of NSCLC cells. Although pemetrexed as a single agent induced TS, pretreatment with rapamycin suppressed pemetrexed-induced TS expression. In vivo, the combination of rapamycin and pemetrexed inhibited growth of NSCLC xenografts, which correlated with decreased mTOR activity and suppression of pemetrexed-induced TS expression. The ability of rapamycin to enhance the efficacy of pemetrexed and prevent TS expression has implications for the design of Phase I and/or Phase II NSCLC clinical trials with mTOR inhibitors in combination with pemetrexed.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Glutamatos/farmacologia , Guanina/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Sirolimo/farmacologia , Timidilato Sintase/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Sinergismo Farmacológico , Feminino , Glutamatos/administração & dosagem , Guanina/administração & dosagem , Guanina/farmacologia , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Pemetrexede , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA