Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2205042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37184042

RESUMO

Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 µM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.


Assuntos
Monofenol Mono-Oxigenase , Neoplasias Cutâneas , Humanos , Antioxidantes/farmacologia , Estrutura Molecular , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação por Computador , Neoplasias Cutâneas/tratamento farmacológico , Azóis , Pirazóis
2.
Mol Cell Biochem ; 473(1-2): 39-50, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32779041

RESUMO

Hypoglycemia is a detrimental complication of rigorous management of type 1 diabetes mellitus. Moderate hypoglycemia (MH) preconditioning of male rats partially affords protection from loss of vulnerable brain neurons to severe hypoglycemia (SH). Current research investigated whether MH preconditioning exerts sex-dimorphic effects on hippocampal CA1 neuron bio-energetic and anti-oxidant responses to SH. SH up-regulated CA1 glucose or monocarboxylate transporter proteins in corresponding hypoglycemia-naïve male versus female rats; precedent MH amplified glucose transporter expression in SH irrespective of sex. Sex-differentiating SH effects on glycolytic and tricarboxylic pathway markers correlated with elevated tissue ATP content and diminished CA1 5'-AMP-activated protein kinase (AMPK) activation in females. MH-preconditioned suppression of mitochondrial energy pathway enzyme profiles and tissue ATP in SH rats coincided with amplified CA1 AMPK activity in both sexes. Anti-oxidative stress enzyme protein responses to SH were primarily sex-contingent; preconditioning amplified most of these profiles, yet exacerbated expression of lipid and protein oxidation markers in SH male and female rats, respectively. Results show that MH preconditioning abolishes female CA1 neuron neuroprotection of positive energy balance through SH, resulting in augmented CA1 AMPK activity and oxidative injury and diminished tissue ATP in hypoglycemia-conditioned versus naïve rats in each sex. It is unclear if SH elicits differential rates of CA1 neuronal destruction in the two sexes, or how MH may impact sex-specific cell loss. Further research is needed to determine if molecular mechanism(s) that maintain female CA1 neuron metabolic stability in the absence of MH preconditioning can be leveraged for therapeutic prevention of hypoglycemic nerve cell damage.


Assuntos
Região CA1 Hipocampal/metabolismo , Glicólise , Hipoglicemia/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Região CA1 Hipocampal/patologia , Feminino , Hipoglicemia/patologia , Masculino , Neurônios/patologia , Oxirredução , Ratos , Ratos Sprague-Dawley
3.
Antioxidants (Basel) ; 10(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374943

RESUMO

Chronic metabolic acidosis (CMA) can be a consequence of persistent hypertension but could potentially play a role in invoking hypertension. Currently, there is a scarcity of studies examining the outcome of induced chronic acidosis on blood pressure regulation. This study investigates CMA as a cause of hypertension. Chronic acidosis was induced in Sprague Dawley rats (100-150 g) by providing a weak acid solution of 0.28 M ammonium chloride (NH4Cl) in tap water for 8 weeks. To determine whether the rats were acidotic, blood pH was measured, while blood pressure (BP) was monitored by tail-cuff plethysmography weekly. Rats were divided into five groups: control, CMA, CMA ± spironolactone, captopril, and tempol. Serum sodium and potassium; renal interstitial fluid (for Angiotensin II concentration); and kidney proximal tubules (for Na+/K+ ATPase- α1 concentration) were analyzed. Reactive oxygen species (ROS) were detected in renal cortical homogenates using electron paramagnetic resonance (EPR). In the CMA rats, a sustained elevation in mean arterial pressure (MAP) associated with a significant decrease in blood pH was observed compared to that of control over the 8 weeks. A significant decrease in MAP was observed in acidotic rats treated with captopril/tempol, whereas spironolactone treatment caused no decrease in MAP as compared to that of the CMA group. The interstitial angiotensin II was increased in the CMA group but decreased in the CMA with captopril and tempol groups. In addition, the urinary sodium was decreased, and the serum sodium levels increased significantly in the CMA groups as compared to that of control. However, the acidotic groups with captopril and tempol showed reduced levels of serum sodium and an elevation in urinary sodium as compared to that of the CMA group. In addition, there was a significant increase in plasma renin and no change in plasma aldosterone in the CMA group with no significant differences in plasma renin or aldosterone observed during spironolactone, captopril, or tempol treatments. The increased expression of Na+/K+ ATPase-α1 in the CMA group suggests that active transport of Na+ to the blood could be causative of the observed hypertension. Furthermore, the EPR analysis confirmed an elevation in superoxide (O2-) radical levels in the CMA group, but the tempol/captopril treated acidotic groups showed less (O2-) compared to that of either the CMA group or control. Taken together, our data suggest that induction of CMA could potentially be causative of hypertension, while the mechanisms underlying the increased BP could be through the activation of intrarenal Ang II and induction of oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA