Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biosci Biotechnol Biochem ; 88(4): 445-452, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38326278

RESUMO

Hakutsurunishiki is a sake rice cultivar bred using Yamadabo (seed parent) and Wataribune 2 (pollen parent), equivalent to a Yamadanishiki sibling. This study evaluated the structural characteristics of the Hakutsurunishiki rice grain that contribute to the brewing characteristics of daiginjo-shu, via a comparison with Yamadanishiki. Hakutsurunishiki brown rice was a little heavy and had a large white core. Observing a cross-section of white rice after soaking revealed that the rice grain structure of Hakutsurunishiki was different from that of Yamadanishiki. Hakutsurunishiki white rice showed fewer voids than Yamadanishiki, promoting a slower water absorption rate. Glucose distribution in rice koji obtained by mass spectrometry imaging showed that Hakutsurunishiki rice koji, like Yamadanishiki, is tsuki-haze type, suggesting that its grain structure is suitable for making rice koji for daiginjo-shu. With these observations, we were able to clarify the structural characteristics of Hakutsurunishiki rice grain.


Assuntos
Bebidas Alcoólicas , Oryza , Bebidas Alcoólicas/análise , Oryza/química , Melhoramento Vegetal , Grão Comestível/química , Água , Fermentação
2.
Anal Chem ; 93(50): 16796-16803, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34870976

RESUMO

Phototrophs assimilate CO2 into organic compounds that accumulate in storage organelles. Elucidation of the carbon dynamics of storage organelles could enhance the production efficiency of valuable compounds and facilitate the screening of strains with high photosynthetic activity. To comprehensively elucidate the carbon dynamics of these organelles, the intraorganellar distribution of the carbon atoms that accumulate at specific time periods should be probed. In this study, the biosynthesis of polysaccharides in storage organelles was spatiotemporally probed via stimulated Raman scattering (SRS) microscopy using a stable isotope (13C) as the tracking probe. Paramylon granules (a storage organelle of ß-1,3-glucan) accumulated in a unicellular photosynthetic alga, Euglena gracilis, were investigated as a model organelle. The carbon source of the culture medium was switched from NaH12CO3 to NaH13CO3 during the production of the paramylon granules; this resulted in the distribution of the 12C and 13C constituents in the granules, so that the biosynthetic process could be tracked. Taking advantage of high-resolution SRS imaging and label switching, the localization of the 12C and 13C constituents inside a single paramylon granule could be visualized in three dimensions, thus revealing the growth process of paramylon granules. We propose that this method can be used for comprehensive elucidation of the dynamic activities of storage organelles.


Assuntos
Euglena gracilis , Microscopia , Marcação por Isótopo , Organelas , Polissacarídeos
3.
Anal Chem ; 93(27): 9345-9355, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34210142

RESUMO

The dopaminergic system is essential for the function of the brain in health and disease. Therefore, detailed studies focused on unraveling the mechanisms involved in dopaminergic signaling are required. However, the lack of probes that mimic dopamine in living tissues, owing to the neurotransmitter's small size, has hampered analysis of the dopaminergic system. The current study aimed to overcome this limitation by developing alkyne-tagged dopamine compounds (ATDAs) that have a minimally invasive and uniquely identifiable alkyne group as a tag. ATDAs were established as chemically and functionally similar to dopamine and readily detectable by methods such as specific click chemistry and Raman scattering. The ATDAs developed here were verified as analogue probes that mimic dopamine in neurons and brain tissues, allowing the detailed characterization of dopamine dynamics. Therefore, ATDAs can act as safe and versatile tools with wide applicability in detailed studies of the dopaminergic system. Furthermore, our results suggest that the alkyne-tagging approach can also be applied to other small-sized neurotransmitters to facilitate characterization of their dynamics in the brain.


Assuntos
Alcinos , Dopamina , Neurônios Dopaminérgicos , Análise Espectral Raman
4.
Analyst ; 146(4): 1234-1238, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33355541

RESUMO

Recent development of stimulated Raman scattering (SRS) microscopy allows for label-free biological imaging with chemical specificity based on molecular-vibrational signatures. In particular, hyperspectral SRS imaging can acquire a molecular-vibrational spectrum at each pixel, allowing us not only to investigate the spectral difference of various biological molecules but also to discriminate different constituents based on their spectral difference. However, the number of constituents discriminated in previous label-free SRS imaging was limited to four because of the subtleness of spectral difference. Here, we report hyperspectral SRS imaging of plant tissues including leaves of Camellia japonica, roots of Arabidopsis thaliana, and thalli of a liverwort Marchantia polymorpha L. We show that SRS can discriminate as many as six components in Marchantia polymorpha L. without labeling. Our results demonstrate the effectiveness of hyperspectral SRS imaging as a tool for label-free multicolour imaging analysis of various biomolecules in plant tissues.


Assuntos
Microscopia , Microscopia Óptica não Linear , Análise Espectral Raman , Vibração
5.
Anal Chem ; 91(15): 9631-9639, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31282650

RESUMO

Time-course analysis of single cells is important to characterize heterogeneous activities of individual cells such as the metabolic response to their environment. Single-cell isolation is an essential step prior to time-course analysis of individual cells by collecting, culturing, and identifying multiple single-cell targets. Although single-cell isolation has been performed by various methods previously, a glass microfluidic device with semiclosed microchannels dramatically improved this process with its simple operation and easy transfer for time-course analysis of identified single cells. This study demonstrates isolating single cells of the highly motile microalgae, Euglena gracilis, by semiclosed microchannels with liquid flow only. The isolated single cells were identified in isolating channels and continuously cultured to track, by Raman microscopy, for the formation of subcellular granules composed of polysaccharide paramylon, a unique metabolite of E. gracilis, generated through photosynthesis. Through low-temperature glass bonding, a thin glass interface was incorporated to the microfluidic device. Thus, the device could perform the direct measurements of cultured single cells at high magnification by Raman microscopy with low background noise. In this study, the first demonstration of sequential monitoring of paramylon biogenesis in a single identified E. gracilis cell is shown.


Assuntos
Euglena gracilis/metabolismo , Glucanos/biossíntese , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/métodos , Análise Espectral Raman/métodos , Vidro , Glucanos/química
7.
ACS Synth Biol ; 11(2): 909-920, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35061943

RESUMO

Polyhydroxyalkanoates (PHAs) are green and sustainable bioplastics that could replace petrochemical synthetic plastics without posing environmental threats to living organisms. In addition, sustainable PHA production could be achieved using marine photosynthetic purple nonsulfur bacteria (PNSBs) that utilize natural seawater, sunlight, carbon dioxide gas, and nitrogen gas for growth. However, PHA production using marine photosynthetic PNSBs has not been economically feasible yet due to its high cost and low productivity. In this work, strain improvement, using genome-wide mutagenesis coupled with high-throughput screening via fluorescence-activated cell sorting, we were able to create Rhodovulum sulfidophilum mutants with enhanced volumetric PHA productivity, with an up to 1.7-fold increase. The best selected mutants (E6 and E6M4) reached the stationary growth phase 1 day faster and accumulated the maximum PHA content 2 days faster than the wild type. Maximizing volumetric PHA productivity before the stationary growth phase is indeed an additional advantage for R. sulfidophilum as a growth-associated PHA producer.


Assuntos
Poli-Hidroxialcanoatos , Fotossíntese/genética , Poli-Hidroxialcanoatos/metabolismo , Proteobactérias
8.
RSC Chem Biol ; 1(4): 204-208, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458759

RESUMO

Diphenylacetylene derivatives containing different polymeric components, poly(l-lysine) (pLys) or tetra(ethylene glycol) (TEG) were designed as novel Raman imaging probes with high Raman sensitivity and low cytotoxicity in living plant cells. The pLys-conjugated probe is internalized via an endocytosis-dependent pathway, whereas TEG-conjugated probe most likely induces direct penetration into the plant cells.

9.
Nat Commun ; 11(1): 3452, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651381

RESUMO

The advent of image-activated cell sorting and imaging-based cell picking has advanced our knowledge and exploitation of biological systems in the last decade. Unfortunately, they generally rely on fluorescent labeling for cellular phenotyping, an indirect measure of the molecular landscape in the cell, which has critical limitations. Here we demonstrate Raman image-activated cell sorting by directly probing chemically specific intracellular molecular vibrations via ultrafast multicolor stimulated Raman scattering (SRS) microscopy for cellular phenotyping. Specifically, the technology enables real-time SRS-image-based sorting of single live cells with a throughput of up to ~100 events per second without the need for fluorescent labeling. To show the broad utility of the technology, we show its applicability to diverse cell types and sizes. The technology is highly versatile and holds promise for numerous applications that are previously difficult or undesirable with fluorescence-based technologies.


Assuntos
Separação Celular/métodos , Análise Espectral Raman/métodos , Animais , Humanos
10.
Sci Rep ; 9(1): 12601, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467379

RESUMO

Epidermal keratinocyte (KC) differentiation, which involves the process from proliferation to cell death for shedding the outermost layer of skin, is crucial for the barrier function of skin. Therefore, in dermatology, it is important to elucidate the epidermal KC differentiation process to evaluate the symptom level of diseases and skin conditions. Previous dermatological studies used staining or labelling techniques for this purpose, but they have technological limitations for revealing the entire process of epidermal KC differentiation, especially when applied to humans. Here, we demonstrate label-free visualization of three-dimensional (3D) intracellular morphological changes of ex vivo human epidermis during epidermal KC differentiation using stimulated Raman scattering (SRS) microscopy. Specifically, we observed changes in nuclei during the initial enucleation process in which the nucleus is digested prior to flattening. Furthermore, we found holes left behind by improperly digested nuclei in the stratum corneum, suggesting abnormal differentiation. Our findings indicate the great potential of SRS microscopy for discrimination of the degree of epidermal KC differentiation.


Assuntos
Diferenciação Celular , Epiderme/metabolismo , Espaço Intracelular/metabolismo , Queratinócitos/citologia , Microscopia , Análise Espectral Raman , Adulto , Idoso , Núcleo Celular/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA