Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193958

RESUMO

Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.


Assuntos
Mycobacterium tuberculosis/genética , Sistemas de Secreção Tipo VII/genética , Animais , Sistemas de Secreção Bacterianos/genética , Evolução Biológica , Evolução Molecular , Amplificação de Genes/genética , Camundongos , Mycobacterium tuberculosis/metabolismo , Sistemas de Secreção Tipo VII/fisiologia , Virulência , Fatores de Virulência/genética
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674505

RESUMO

Cellulose of bacterial origin, known as bacterial cellulose (BC), is one of the most versatile biomaterials that has a huge potential in tissue engineering due to its favourable mechanical properties, high hydrophilicity, crystallinity, and purity. Additional properties such as porous nano-fibrillar 3D structure and a high degree of polymerisation of BC mimic the properties of the native extracellular matrix (ECM), making it an excellent material for the fabrication of composite scaffolds suitable for cell growth and tissue development. Recently, the fabrication of BC-based scaffolds, including composites and blends with nanomaterials, and other biocompatible polymers has received particular attention owing to their desirable properties for tissue engineering. These have proven to be promising advanced materials in hard and soft tissue engineering. This review presents the latest state-of-the-art modified/functionalised BC-based composites and blends as advanced materials in tissue engineering. Their applicability as an ideal biomaterial in targeted tissue repair including bone, cartilage, vascular, skin, nerve, and cardiac tissue has been discussed. Additionally, this review briefly summarises the latest updates on the production strategies and characterisation of BC and its composites and blends. Finally, the challenges in the future development and the direction of future research are also discussed.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Celulose/química , Alicerces Teciduais/química , Polímeros , Bactérias/química
3.
J Bacteriol ; 202(22)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900827

RESUMO

Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains.IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/métodos , Micobacteriófagos/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Humanos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia
4.
J Clin Microbiol ; 58(3)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31801839

RESUMO

The emergence of drug resistance in Helicobacter pylori has resulted in a greater need for susceptibility-guided treatment. While the alleles associated with resistance to clarithromycin and levofloxacin have been defined, there are limited data regarding the molecular mechanisms underlying resistance to other antimicrobials. Using H. pylori isolates from 42 clinical specimens, we compared phenotypic and whole-genome sequencing (WGS)-based detection of resistance. Phenotypic resistance correlated with the presence of alleles of 23S rRNA (A2142G/A2143G) for clarithromycin (kappa coefficient, 0.84; 95% confidence interval [CI], 0.67 to 1.0) and gyrA (N87I/N87K/D91Y/D91N/D91G/D99N) for levofloxacin (kappa coefficient, 0.90; 95% CI, 0.77 to 1.0). Phenotypic resistance to amoxicillin in three isolates correlated with mutations in pbp1, pbp2, and/or pbp3 within coding regions near known amoxicillin binding motifs. All isolates were phenotypically susceptible to tetracycline, although four bore a mutation in 16S rRNA (A926G). For metronidazole, nonsense mutations and R16H substitutions in rdxA correlated with phenotypic resistance (kappa coefficient, 0.76; 95% CI, 0.56 to 0.96). Previously identified mutations in the rpoB rifampin resistance-determining region (RRDR) were not present, but 14 novel mutations outside the RRDR were found in rifampin-resistant isolates. WGS also allowed for strain lineage determination, which may be important for future studies in associating precise MICs with specific resistance alleles. In summary, WGS allows for broad analyses of H. pylori isolates, and our findings support the use of WGS for the detection of clarithromycin and levofloxacin resistance. Additional studies are warranted to better define mutations conferring resistance to amoxicillin, tetracycline, and rifampin, but combinatorial analyses for rdxA gene truncations and R16H mutations have utility for determining metronidazole resistance.


Assuntos
Antibacterianos , Infecções por Helicobacter , Helicobacter pylori , Antibacterianos/farmacologia , Claritromicina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Feminino , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/genética , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Humanos , Masculino , Metronidazol , Testes de Sensibilidade Microbiana , Mutação , New York , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Adulto Jovem
5.
Proc Natl Acad Sci U S A ; 114(41): E8731-E8740, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973853

RESUMO

Computer design and chemical synthesis generated viable variants of poliovirus type 1 (PV1), whose ORF (6,189 nucleotides) carried up to 1,297 "Max" mutations (excess of overrepresented synonymous codon pairs) or up to 2,104 "SD" mutations (randomly scrambled synonymous codons). "Min" variants (excess of underrepresented synonymous codon pairs) are nonviable except for P2Min, a variant temperature-sensitive at 33 and 39.5 °C. Compared with WT PV1, P2Min displayed a vastly reduced specific infectivity (si) (WT, 1 PFU/118 particles vs. P2Min, 1 PFU/35,000 particles), a phenotype that will be discussed broadly. Si of haploid PV presents cellular infectivity of a single genotype. We performed a comprehensive analysis of sequence and structures of the PV genome to determine if evolutionary conserved cis-acting packaging signal(s) were preserved after recoding. We showed that conserved synonymous sites and/or local secondary structures that might play a role in determining packaging specificity do not survive codon pair recoding. This makes it unlikely that numerous "cryptic, sequence-degenerate, dispersed RNA packaging signals mapping along the entire viral genome" [Patel N, et al. (2017) Nat Microbiol 2:17098] play the critical role in poliovirus packaging specificity. Considering all available evidence, we propose a two-step assembly strategy for +ssRNA viruses: step I, acquisition of packaging specificity, either (a) by specific recognition between capsid protein(s) and replication proteins (poliovirus), or (b) by the high affinity interaction of a single RNA packaging signal (PS) with capsid protein(s) (most +ssRNA viruses so far studied); step II, cocondensation of genome/capsid precursors in which an array of hairpin structures plays a role in virion formation.


Assuntos
Genoma Viral , Poliomielite/virologia , Poliovirus/genética , Poliovirus/patogenicidade , Vírion/genética , Montagem de Vírus , Replicação Viral , Células A549 , Células HeLa , Humanos , Fenótipo , Poliomielite/genética , RNA Viral
6.
J Virol ; 90(14): 6174-6186, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27076638

RESUMO

UNLABELLED: The specificity of encapsidation of C-cluster enteroviruses depends on an interaction between capsid proteins and nonstructural protein 2C(ATPase) In particular, residue N252 of poliovirus 2C(ATPase) interacts with VP3 of coxsackievirus A20, in the context of a chimeric virus. Poliovirus 2C(ATPase) has important roles both in RNA replication and encapsidation. In this study, we searched for additional sites in 2C(ATPase), near N252, that are required for encapsidation. Accordingly, segments adjacent to N252 were analyzed by combining triple and single alanine mutations to identify residues required for function. Two triple alanine mutants exhibited defects in RNA replication. The remaining two mutations, located in secondary structures in a predicted three-dimensional model of 2C(ATPase), caused lethal growth phenotypes. Most single alanine mutants, derived from the lethal variants, were either quasi-infectious and yielded variants with wild-type (wt) or temperature-sensitive (ts) growth phenotypes or had a lethal growth phenotype due to defective RNA replication. The K259A mutation, mapping to an α helix in the predicted structure of 2C(ATPase), resulted in a cold-sensitive virus. In vivo protein synthesis and virus production were strikingly delayed at 33°C relative to the wt, suggesting a defect in uncoating. Studies with a reporter virus indicated that this mutant is also defective in encapsidation at 33°C. Cell imaging confirmed a much-reduced production of K259A mature virus at 33°C relative to the wt. In conclusion, we have for the first time linked a cold-sensitive encapsidation defect in 2C(ATPase) (K259A) to a subsequent delay in uncoating of the virus particle at 33°C during the next cycle of infection. IMPORTANCE: Enterovirus morphogenesis, which involves the encapsidation of newly made virion RNA, is a process still poorly understood. Elucidation of this process is important for future drug development for a large variety of diseases caused by these agents. We have previously shown that the specificity of encapsidation of poliovirus and of C-cluster coxsackieviruses, which are prototypes of enteroviruses, is dependent on an interaction of capsid proteins with the multifunctional nonstructural protein 2C(ATPase) In this study, we have searched for residues in poliovirus 2C(ATPase), near a presumed capsid-interacting site, important for encapsidation. An unusual cold-sensitive mutant of 2C(ATPase) possessed a defect in encapsidation at 37°C and subsequently in uncoating during the next cycle of infection at 33°C. These studies not only reveal a new site in 2C(ATPase) that is involved in encapsidation but also identify a link between encapsidation and uncoating.


Assuntos
Capsídeo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação/genética , Poliomielite/patologia , Poliovirus/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Desenvelopamento do Vírus , Sequência de Aminoácidos , Substituição de Aminoácidos , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mutagênese Sítio-Dirigida , Fenótipo , Poliomielite/genética , Poliomielite/virologia , Poliovirus/enzimologia , RNA Viral/genética , Homologia de Sequência de Aminoácidos , Montagem de Vírus , Replicação Viral
7.
Animals (Basel) ; 14(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791643

RESUMO

This study aimed to investigate the evolutionary profile (including diversity, activity, and abundance) of retrotransposons (RTNs) with long terminal repeats (LTRs) in ten species of Tetraodontiformes. These species, Arothron firmamentum, Lagocephalus sceleratus, Pao palembangensis, Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, Takifugu rubripes, Tetraodon nigroviridis, Mola mola, and Thamnaconus septentrionalis, are known for having the smallest genomes among vertebrates. Data mining revealed a high diversity and wide distribution of LTR retrotransposons (LTR-RTNs) in these compact vertebrate genomes, with varying abundances among species. A total of 819 full-length LTR-RTN sequences were identified across these genomes, categorized into nine families belonging to four different superfamilies: ERV (Orthoretrovirinae and Epsilon retrovirus), Copia, BEL-PAO, and Gypsy (Gmr, Mag, V-clade, CsRN1, and Barthez). The Gypsy superfamily exhibited the highest diversity. LTR family distribution varied among species, with Takifugu bimaculatus, Takifugu flavidus, Takifugu ocellatus, and Takifugu rubripes having the highest richness of LTR families and sequences. Additionally, evidence of recent invasions was observed in specific tetraodontiform genomes, suggesting potential transposition activity. This study provides insights into the evolution of LTR retrotransposons in Tetraodontiformes, enhancing our understanding of their impact on the structure and evolution of host genomes.

8.
Environ Health Insights ; 17: 11786302231213546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046521

RESUMO

The study assessed 18 Polycyclic Aromatic Hydrocarbons (PAHs) in O. niloticus (Nile tilapia) sampled from an aquaculture cage (farm) and a wild catch. The PAHs in fish samples were analysed using Gas Chromatography-Mass Spectrometry. Four PAHs (in order of levels: Indeno [1,2,3-cd] pyrene > Anthracene > Perylene > Pyrene; 100-0.8 µg/kg) and only one PAH (Pyrene: 4 µg/kg) were detected in raw samples from the cage and wild catch respectively. Chargrilling significantly increased Pyrene levels after cooking (wild: 4-11 µg/kg; cage: 5-23 µg/kg, p < .05), and likewise Anthracene levels in cage samples (13-153 µg/kg) but decreased Indeno [1,2,3-cd] pyrene levels from 100 ± 20 to 1.2 ± 0.2 µg/kg in cage samples. Smoking significantly increased 13 to 15 PAH congeners' levels (from < 1.0 up to 340 µg/kg) and total PAHs (wild: 4 to 840 µg/kg; cage: 110 to 560 µg/kg), and decreased Indeno [1,2,3-cd] pyrene (100 to 1.3 µg/kg) in cage samples but showed no effect on Benzo [g, h, i] perylene and Dibenzo [a, h] anthracene levels in all samples. For smoked samples, Benzo [a] pyrene and PAH4 (Benzo [a] anthracene, Chrysene, Benzo [b] fluoranthene, and Benzo [a] pyrene) exceeded the respective maximum permissible limits of 2 µg/kg and 12 µg/kg, and significantly influenced the levels of carcinogenic PAHs (CPAH, 135-170 µg/kg). Nevertheless, the Excess Cancer Risk (ECR) estimates, from a conservative approach, were far below the threshold (10-4), implying that consuming smoked or grilled tilapia from the study site is safe.

9.
Genes (Basel) ; 14(2)2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36833450

RESUMO

Some families of mobile elements in bacterial genomes encode not only a transposase but also an accessory TnpB gene. This gene has been shown to encode an RNA-guided DNA endonuclease, co-evolving with Y1 transposase and serine recombinase in mobile elements IS605 and IS607. In this paper, we reveal the evolutionary relationships among TnpB-containing mobile elements (TCMEs) in well-assembled genomes of six bacterial species: Bacillus cereus, Clostridioides difficile, Deinococcus radiodurans, Escherichia coli, Helicobacter pylori and Salmonella enterica. In total, 9996 TCMEs were identified in 4594 genomes. They belonged to 39 different insertion sequences (ISs). Based on their genetic structures and sequence identities, the 39 TCMEs were classified into three main groups and six subgroups. According to our phylogenetic analysis, TnpBs include two main branches (TnpB-A and TnpB-B) and two minor branches (TnpB-C and TnpB-D). The key TnpB motifs and the associated Y1 and serine recombinases were highly conserved across species, even though their overall sequence identities were low. Substantial variation was observed for the rate of invasion across bacterial species and strains. Over 80% of the genomes of B. cereus, C. difficile, D. radiodurans and E. coli contained TCMEs; however, only 64% of the genomes of H. pylori and 44% of S. enterica genomes contained TCMEs. IS605 showed the largest rate of invasion in these species, while IS607 and IS1341 had a relatively narrow distribution. Co-invasions of IS605, IS607 and IS1341 elements were observed in various genomes. The largest average copy number was observed for IS605b elements in C. difficile. The average copy numbers of most other TCMEs were smaller than four. Our findings have important implications for understanding the co-evolution of TnpB-containing mobile elements and their biological roles in host genome evolution.


Assuntos
Clostridioides difficile , Escherichia coli , Sequência de Bases , Filogenia , Escherichia coli/genética , Clostridioides difficile/genética , Bactérias/genética , Recombinases/genética , Transposases/genética
10.
Insects ; 14(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37103217

RESUMO

In this study, we investigated the presence of piggyBac (PB) transposons in 44 bee genomes from the Apoidea order, which is a superfamily within the Hymenoptera, which includes a large number of bee species crucial for pollination. We annotated the PB transposons in these 44 bee genomes and examined their evolution profiles, including structural characteristics, distribution, diversity, activity, and abundance. The mined PB transposons were divided into three clades, with uneven distribution in each genus of PB transposons in Apoidea. The complete PB transposons we discovered are around 2.23-3.52 kb in length and encode transposases of approximately 580 aa, with terminal inverted repeats (TIRs) of about 14 bp and 4 bp (TTAA) target-site duplications. Long TIRs (200 bp, 201 bp, and 493 bp) were also detected in some species of bees. The DDD domains of the three transposon types were more conserved, while the other protein domains were less conserved. Generally, most PB transposons showed low abundance in the genomes of Apoidea. Divergent evolution dynamics of PB were observed in the genomes of Apoidea. PB transposons in some identified species were relatively young, whiles others were older and with some either active or inactive. In addition, multiple invasions of PB were also detected in some genomes of Apoidea. Our findings highlight the contribution of PB transposons to genomic variation in these species and suggest their potential as candidates for future gene transfer tools.

11.
Biology (Basel) ; 13(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38248455

RESUMO

TEs, including DNA transposons, are major contributors of genome expansions, and have played a very significant role in shaping the evolution of animal genomes, due to their capacity to jump from one genomic position to the other. In this study, we investigated the evolution landscapes of PB transposons, including their distribution, diversity, activity and structure organization in 79 species of small (compact) genomes of animals comprising both vertebrate and invertebrates. Overall, 212 PB transposon types were detected from almost half (37) of the total number of the small genome species (79) investigated. The detected PB transposon types, which were unevenly distributed in various genera and phyla, have been classified into seven distinct clades or families with good bootstrap support (>80%). The PB transposon types that were identified have a length ranging from 1.23 kb to 9.51 kb. They encode transposases of approximately ≥500 amino acids in length, and possess terminal inverted repeats (TIRs) ranging from 4 bp to 24 bp. Though some of the transposon types have long TIRs (528 bp), they still maintain the consistent and reliable 4 bp target site duplication (TSD) of TTAA. However, PiggyBac-2_Cvir transposon originating from the Crassostrea virginica species exhibits a unique TSD of TATG. The TIRs of the transposons in all the seven families display high divergence, with a highly conserved 5' end motif. The core transposase domains (DDD) were better conserved among the seven different families compared to the other protein domains, which were less prevalent in the vertebrate genome. The divergent evolution dynamics analysis also indicated that the majority of the PB transposon types identified in this study are either relatively young or old, with some being active. Additionally, numerous invasions of PB transposons were found in the genomes of both vertebrate and invertebrate animals. The data reveals that the PB superfamily is widely distributed in these species. PB transposons exhibit high diversity and activity in the small genomes of animals, and might play a crucial role in shaping the evolution of these small genomes of animals.

12.
J Funct Biomater ; 14(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36662087

RESUMO

In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.

13.
Trends Mol Med ; 28(4): 331-342, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35232669

RESUMO

Polyhydroxyalkanoates (PHAs) are sustainable, versatile, biocompatible, and bioresorbable polymers that are suitable for biomedical applications. Produced via bacterial fermentation under nutrient-limiting conditions, they are uncovering a new horizon for devices in biomedical applications. A wide range of cell types including bone, cartilage, nerve, cardiac, and pancreatic cells, readily attach grow and are functional on PHAs. The tuneable physical properties and resorption rates of PHAs provide a toolbox for biomedical engineers in developing devices for hard and soft tissue engineering applications and drug delivery. The versatility of PHAs and the vast range of different PHA-based prototypes are discussed. Current in vitro, ex vivo, and in vivo development work are described and their regulatory approvals are reviewed.


Assuntos
Poli-Hidroxialcanoatos , Bactérias/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Poli-Hidroxialcanoatos/metabolismo , Poli-Hidroxialcanoatos/uso terapêutico , Engenharia Tecidual
14.
Microbiol Spectr ; 10(5): e0228522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040163

RESUMO

Genome sequencing and assembly of viral genomes within the Herpesviridae family, particularly herpes simplex virus (HSV), have been challenging due to the large size (~154 Kb), high GC content (68%), and nucleotide variations arising during replication. Oxford Nanopore Technology (ONT) has been successful in obtaining read lengths ranging from 100 Kb up to 2.3 Mb. We have optimized DNA extraction and sequencing with ONT to capture the whole genome of HSV-1 as a single read. Although previous studies described the presence of four different genome isomers of HSV, we provided the first report on capturing all four variants' full-length genome as single reads. These isomers were found to be present in almost equal proportion in the sequenced DNA preparation. IMPORTANCE With the advent of next-generation sequencing platforms, genome sequencing of viruses can be performed in a relatively shorter time frame in even the most austere conditions. Ultralong read sequencing platforms, such as Oxford Nanopore Technology (ONT), have made it possible to capture the full-length genome of DNA viruses as a single read. By optimizing ONT for this purpose, we captured the genome (~154 Kb) of a clinical strain of herpes simplex virus 1 (HSV-1). Additionally, we captured full-length sequences of the four isomers of lab-grown HSV-1 virus and were able to determine the frequency of each within the isogenic population. This method will open new directions in studying the significance of these isomers and their clinical relevance to HSV-1 infections. It will also improve basic studies on the recombination and replication of this virus.


Assuntos
Herpes Simples , Sequenciamento por Nanoporos , Humanos , Simplexvirus , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleotídeos , Análise de Sequência de DNA/métodos
15.
Genes (Basel) ; 13(8)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-36011270

RESUMO

Retrotransposons account for more than one-third of the pig reference genome. On account of the genome variability in different breeds, structural variation (SV) caused by retrotranspos-on-generated deletion or insertion (indel) may have a function in the genome. Litter size is one of the most important reproductive traits and significantly impacts profitability in terms of pig production. We used the method of bioinformatics, genetics, and molecular biology to make an analysis among different pig genomes. Predicted 100 SVs were annotated as retrotransposon indel in 20 genes related to reproductive performance. The PCR detection based on these predicted SVs revealed 20 RIPs in 20 genes, that most RIPs (12) were generated by SINE indel, and eight RIPs were generated by the ERV indel. We selected 12 RIPs to make the second round PCR detection in 24 individuals among nine pig breeds. The PCR detection results revealed that the RIP-A1CF-4 insertion in the breed of Bama, Large White, and Meishan only had the homozygous genotype but low to moderately polymorphisms were present in other breeds. We found that RIP-CWH43-9, RIP-IDO2-9, RIP-PRLR-6, RIP-VMP1-12, and RIP-OPN-1 had a rich polymorphism in the breed of Large White pigs. The statistical analysis revealed that RIP-CWH43-9 had a SINE insertion profitable to the reproductive traits of TNB and NBA but was significantly affected (p < 0.01) and (p < 0.05) in the reproductive traits of litter birthweight (LW) in Large White. On the other hand, the SINE insertion in IDO2-9 may be a disadvantage to the reproductive traits of LW, which was significantly affected (p < 0.05) in Large White. These two RIPs are significant in pig genome research and could be useful molecular markers in the breeding system.


Assuntos
Polimorfismo Genético , Retroelementos , Animais , Feminino , Genoma , Tamanho da Ninhada de Vivíparos/genética , Gravidez , Reprodução/genética , Retroelementos/genética , Suínos/genética
16.
Genes (Basel) ; 13(8)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36011333

RESUMO

Retrotransposon is an important component of the mammalian genome. Previous studies have shown that the expression of protein-coding genes was affected by the insertion of retrotransposon into the proximal genes, and the phenotype variations would be related to the retrotransposon insertion polymorphisms (RIPs). In this study, leptin (LEP), leptin receptor (LEPR), and leptin receptor overlapping transcript (LEPROT), which play important roles in the regulation of fat synthesis and body weight, were screened to search for the RIPs and their effect on phenotype and gene expression, as well as to further study the function of the insertion. The results showed that three RIPs located in intron 1 of LEPROT and intron 2 and 21 of LEPR were identified, and they were all SINEA1, which was one type of retrotransposon. The SINE insertion at the LEPROT was the dominant allele in native pig breeds. The age of 100 kg body weight of SINE+/+ Large White individuals was significantly higher than those of SINE+/− and SINE−/− individuals (p < 0.05). The LEPROT gene expression in the liver and suet of 30-day-old SINE−/− Sujiang piglets were significantly higher than those of SINE+/+ and SINE+/− piglets (p < 0.01). The dual-luciferase reporter gene assay showed that SINE insertion in PK15 and 3T3-L1 cells significantly reduced the promoter activity of the LEPROT gene (p < 0.01). Therefore, SINE insertion can be a repressor to reduce the expression of LEPROT and could be a useful molecular marker for assisted selection of growth traits in pig breeding.


Assuntos
Receptores para Leptina , Retroelementos , Animais , Peso Corporal/genética , Genoma , Mamíferos/genética , Fenótipo , Receptores para Leptina/genética , Suínos/genética
17.
Life (Basel) ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295085

RESUMO

It has been established that through binding to bone morphogenetic proteins (BMPs), bone morphogenetic protein receptor I B (BMPR1B) can mediate transforming growth factor ß (TGF-ß) signal transduction, and is involved in the regulation of several biological processes, such as bone and muscle formation and homeostasis, as well as folliculogenesis. Also known as FecB, BMPR1B has been reported as the major gene for sheep prolificacy. A number of previous studies have analyzed the relationship between single nucleotide polymorphisms (SNPs) in this gene and its related performance. In recent years, with the illustration of the effect of retrotransposon insertion on the expression of the proximal genes or phenotypic variation, retrotransposon insertion polymorphisms (RIPs) have been used as a novel type of molecular marker in the evaluation of evolution, population structure and breeding of plant and domestic animals. In this study, the RIPs in porcine BMPR1B gene were excavated, and thereafter verified using a comparative genome and polymerase chain reaction (PCR). The potential effects of phenotype, gene expression and functions related to RIPs were also explored. The results showed that 13 distinct RIPs were identified in introns of porcine BMPR1B. Among these, only BMPR1B-SINE-RIP9 and BMPR1B-LINE-RIP13 displayed a close relationship with the growth traits of Large White pigs. Moreover, the total number of BMPR1B-SINE+/+-RIP9 individuals born was found to be significantly higher than that of SINE−/− (p < 0.05). These two RIPs showed an obvious distribution pattern among Chinese indigenous breeds and Western commercial breeds. The expression of BMPR1B in ovaries of adult BMPR1B-SINE+/+-RIP9 Sushan pigs was found to be significantly higher in comparison to those of BMPR1B-SINE−/−-RIP9 (p < 0.05). SINE insertion of BMPR1B-SINE-RIP9 and LINE insertion of BMPR1B-LINE-RIP13 were observed to significantly increase the activity of Octamer binding transcription factor 4 (OCT4) minipromoter in CHO and C2C12 cells (p < 0.01). Therefore, these two RIPs could serve as useful molecular markers for modulating the growth or reproductive traits in assisted selection of pig breeding, while the mechanisms of the insertion function should be studied further.

18.
Genes (Basel) ; 13(12)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36553507

RESUMO

Both ZeBrafish (ZB), a recently identified DNA transposon in the zebrafish genome, and SB, a reconstructed transposon originally discovered in several fish species, are known to exhibit high transposition activity in vertebrate cells. Although a similar structural organization was observed for ZB and SB transposons, the evolutionary profiles of their homologs in various species remain unknown. In the present study, we compared their taxonomic ranges, structural arrangements, sequence identities, evolution dynamics, and horizontal transfer occurrences in vertebrates. In total, 629 ZB and 366 SB homologs were obtained and classified into four distinct clades, named ZB, ZB-like, SB, and SB-like. They displayed narrow taxonomic distributions in eukaryotes, and were mostly found in vertebrates, Actinopterygii in particular tended to be the major reservoir hosts of these transposons. Similar structural features and high sequence identities were observed for transposons and transposase, notably homologous to the SB and ZB elements. The genomic sequences that flank the ZB and SB transposons in the genomes revealed highly conserved integration profiles with strong preferential integration into AT repeats. Both SB and ZB transposons experienced horizontal transfer (HT) events, which were most common in Actinopterygii. Our current study helps to increase our understanding of the evolutionary properties and histories of SB and ZB transposon families in animals.


Assuntos
Elementos de DNA Transponíveis , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Elementos de DNA Transponíveis/genética , Transposases/genética
19.
Adv Microb Physiol ; 77: 89-138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34756212

RESUMO

Bacterial cellulose (BC) is a natural polymer produced by the acetic acid producing bacterium and has gathered much interest over the last decade for its biomedical and biotechnological applications. Unlike the plant derived cellulose nanofibres, which require pretreatment to deconstruct the recalcitrant lignocellulosic network, BC are 100% pure, and are extruded by cells as nanofibrils. Moreover, these nanofibrils can be converted to macrofibers that possess excellent material properties, surpassing even the strength of steel, and can be used as substitutes for fossil fuel derived synthetic fibers. The focus of the review is to present the fundamental long-term research on the influence of environmental factors on the organism's BC production capabilities, the production methods that are available for scaling up/scaled-up processes, and its use as a bulk commodity or for biomedical applications.

20.
PLoS One ; 13(9): e0198303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192757

RESUMO

Dengue virus (DENV), an arthropod-borne ("arbovirus") virus, causes a range of human maladies ranging from self-limiting dengue fever to the life-threatening dengue shock syndrome and proliferates well in two different taxa of the Animal Kingdom, mosquitoes and primates. Mosquitoes and primates show taxonomic group-specific intolerance to certain codon pairs when expressing their genes by translation. This is called "codon pair bias". By necessity, dengue viruses evolved to delicately balance this fundamental difference in their open reading frames (ORFs). We have undone the evolutionarily conserved genomic balance in the DENV2 ORF sequence and specifically shifted the encoding preference away from primates. However, this recoding of DENV2 raised concerns of 'gain-of-function,' namely whether recoding could inadvertently increase fitness for replication in the arthropod vector. Using mosquito cell lines and two strains of Aedes aegypti we did not observe any increase in fitness in DENV2 variants codon pair deoptimized for humans. This ability to disrupt and control DENV2's host preference has great promise towards developing the next generation of synthetic vaccines not only for DENV but for other emerging arboviral pathogens such as chikungunya virus and Zika virus.


Assuntos
Vírus da Dengue/genética , Genoma Viral , Replicação Viral/genética , Aedes/virologia , Animais , Linhagem Celular , Chlorocebus aethiops , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA