Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 56(3): 644-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23192694

RESUMO

AIMS/HYPOTHESIS: We sought to determine the impact of long-standing type 1 diabetes on haematopoietic stem/progenitor cell (HSC) number and function and to examine the impact of modulating glycoprotein (GP)130 receptor in these cells. METHODS: Wild-type, gp130(-/-) and GFP chimeric mice were treated with streptozotocin to induce type 1 diabetes. Bone marrow (BM)-derived cells were used for colony-formation assay, quantification of side population (SP) cells, examination of gene expression, nitric oxide measurement and migration studies. Endothelial progenitor cells (EPCs), a population of vascular precursors derived from HSCs, were compared in diabetic and control mice. Cytokines were measured in BM supernatant fractions by ELISA and protein array. Flow cytometry was performed on enzymatically dissociated retina from gfp(+) chimeric mice and used to assess BM cell recruitment to the retina, kidney and blood. RESULTS: BM cells from the 12-month-diabetic mice showed reduced colony-forming ability, depletion of SP-HSCs with a proportional increase in SP-HSCs residing in hypoxic regions of BM, decreased EPC numbers, and reduced eNos (also known as Nos3) but increased iNos (also known as Nos2) and oxidative stress-related genes. BM supernatant fraction showed increased cytokines, GP130 ligands and monocyte/macrophage stimulating factor. Retina, kidney and peripheral blood showed increased numbers of CD11b(+)/CD45(hi)/ CCR2(+)/Ly6C(hi) inflammatory monocytes. Diabetic gp130(-/-) mice were protected from development of diabetes-induced changes in their HSCs. CONCLUSIONS/INTERPRETATION: The BM microenvironment of type 1 diabetic mice can lead to changes in haematopoiesis, with generation of more monocytes and fewer EPCs contributing to development of microvascular complications. Inhibition of GP130 activation may serve as a therapeutic strategy to improve the key aspects of this dysfunction.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Células-Tronco Hematopoéticas/citologia , Monócitos/citologia , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Células Endoteliais/citologia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes
2.
Dev Biol ; 223(2): 383-98, 2000 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10882523

RESUMO

Vascular endothelial growth factor (VEGF) is a secreted mitogen which specifically stimulates proliferation of vascular endothelial cells in vitro and in vivo. Its expression pattern is consistent with it being an important regulator of vasculogenesis and angiogenesis, and targeted disruption of VEGF-A has demonstrated that it is essential for vascular development. To determine if VEGF-A was sufficient to alter vascularization in the eye we generated transgenic mice which express human VEGF-A(165) specifically in the lens. Expression of transgenic VEGF-A led to excessive proliferation and accumulation of disorganized angioblasts and endothelial cells around the lens. The results support the hypothesis that VEGF-A can initiate the process of vascularization by stimulating chemoattraction and proliferation of angioblasts and endothelial cells and that VEGF-A expression can stimulate angiogenic remodeling. However, VEGF-A alone was not sufficient to direct blood vessel organization or maturation.


Assuntos
Fatores de Crescimento Endotelial/genética , Olho/irrigação sanguínea , Cristalino/irrigação sanguínea , Linfocinas/genética , Neovascularização Fisiológica , Animais , Membrana Basal/metabolismo , Colágeno/biossíntese , Endotélio Vascular/citologia , Olho/embriologia , Olho/crescimento & desenvolvimento , Humanos , Hiperplasia , Laminina/biossíntese , Cristalino/embriologia , Cristalino/crescimento & desenvolvimento , Mesoderma/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
3.
Gen Pharmacol ; 35(5): 233-9, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11888678

RESUMO

Following chronic ischemia, vascular endothelial growth factor (VEGF) is induced primarily in the ganglion cell layer of the retina. This often results in neovascularization (NV) that originates from the vascular bed closest to the ganglion cell layer. To study the effects of VEGF, independent lines of transgenic mice that express VEGF in the lens and in the retina have been generated. Expression in the lens results in excessive proliferation and accumulation of angioblasts and endothelial cells in proximity to the lens. However, VEGF expression is not sufficient to direct blood vessel organization or maturation in the prenatal mouse. Abnormal vessels do form on the retinal surface, but not until the second postnatal week. In transgenic mice expressing VEGF in the photoreceptors, NV originates from the deep capillary bed--the vascular bed closest to the photoreceptors. NV is accompanied by localized blood-retinal barrier breakdown. NV is also induced in PDGF-B transgenic mice. PDGF-B expression in the lens occurs prenatally and, during this time, mainly affects the perilenticular vessels. Postnatally, transgenic mice expressing PDGF-B in the lens or photoreceptors show a similar phenotype. In both models, a highly vascularized cell mass containing endothelial cells, pericytes, and glia forms in the superficial retina, and the formation of the deep capillary bed is inhibited. The phenotype suggests that an additional factor is necessary for the maturation and penetration of vascular endothelial cells into the retina to form the deep capillary bed.


Assuntos
Barreira Hematorretiniana/fisiologia , Substâncias de Crescimento/biossíntese , Neovascularização Fisiológica/fisiologia , Animais , Substâncias de Crescimento/genética , Isquemia/genética , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Neovascularização Patológica/embriologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA