Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Econ Entomol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401329

RESUMO

The Eastern subterranean termite, Reticulitermes flavipes (Kollar) (Blattodea: Rhinotermitidae), is a significant pest, causing extensive damage to structures that amount to substantial economic losses. Boric acid is widely used for wood preservation due to its stability and broad-spectrum insecticidal properties, yet its impact on termite gut microbiomes and the implications of such effects remain understudied. Our study evaluates the dose-dependent mortality of R. flavipes upon being provided boric acid treated filter papers and investigates the resulting dysbiosis within the termite gut microbiome. Consistent with reports from other insects, mortality increased in a dose-dependent manner, with the highest boric acid concentration (203.7 µg/cm2 of filter paper) significantly reducing termite survival. 16S rRNA gene sequencing of the gut bacterial microbiome revealed notable shifts in composition, indicating boric acid-induced dysbiosis. Aside from an overall decrease in bacterial diversity, the relative abundance of some symbionts essential for termite nutrition decreased in response to higher boric acid concentrations, while several opportunistic pathogens increased. Our findings extend the understanding of boric acid's mode of action in termites, emphasizing its ability to significantly modulate the bacterial symbiont community, which can have dire effects on termite biology. Considering its ability to protect wood from further termite consumption, our study supports the continued use of boric acid and related compounds for termite-resistant treatments for wood.

2.
Sci Rep ; 14(1): 8555, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609415

RESUMO

Many gregarious insect species use aggregation and alarm pheromones. The bed bug, Cimex lectularius L., emits an alarm pheromone (AP), a 70/30 blend of (E)-2-hexenal and (E)-2-octenal, when threatened. Bed bugs avoid temperatures above 43 °C, which are lethal to bugs and used commercially as spatial heat treatments to manage infestations. However, the interaction of bed bug AP in heat avoidance has not been investigated. The goal of this research was to: 1) determine if bed bugs emit AP as an alarm response to heat exposure, and 2) quantify the behavioral responses of conspecifics to AP emitted by heat-exposed bed bugs. Using a selected ion flow tube mass spectrometer, we found that bed bugs responded to lethal and sublethal heat exposure by emitting AP. The Harlan laboratory population emitted more pheromone than a laboratory adapted field population from Florida (McCall). Harlan females emitted the most AP, followed by Harlan males, McCall females and males. In separate behavioral experiments, we showed that conspecifics (i.e., recipients) reacted to AP released by heat exposed bed bugs (i.e., emitters) by frantically moving within 50 mm and 100 mm test arenas. The Harlan recipients reacted to AP in 100 mm areas, whereas the McCall strain did not, indicating a short area of effectiveness of the AP. Synthetic AP components tested in behavioral experiments caused identical effects as the natural AP blend released by heat-exposed bed bugs.


Assuntos
Aldeídos , Percevejos-de-Cama , Ectoparasitoses , Feminino , Masculino , Animais , Temperatura Alta , Causalidade , Feromônios
3.
Insects ; 13(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135475

RESUMO

The ability of a fungal entomopathogen to infect an insect depends on a variety of factors, including strain, host, and environmental conditions. Similarly, an insect's ability to prevent fungal infection is dependent on its biology, environment, and evolutionary history. Synanthropic pests have adapted to thrive in the indoor environment, yet they arose from divergent evolutionary lineages and occupy different feeding guilds. The hematophagous bed bug (Cimex lectularius) and omnivorous German cockroach (Blattella germanica) are highly successful indoors, but have evolved different physiological and behavioral adaptations to cope with the human-built environment, some of which also reduce the efficacy of fungal biopesticides. In order to gain greater insight into the host barriers that prevent or constrain fungal infection in bed bugs and German cockroaches, we tested different doses of Beauveria bassiana GHA through surface contact, topical application, feeding, and injection. Bed bugs were generally more susceptible to infection by B. bassiana with the mode of delivery having a significant impact on infectivity. The German cockroach was highly resilient to infection, requiring high doses of fungal conidia (>8.8 × 104) delivered by injection into the hemocoel to cause mortality. Mortality occurred much faster in both insect species after exposure to surfaces dusted with dry conidia than surfaces treated with conidia suspended in water or oil. These findings highlight the importance of developing innovative delivery techniques to enhance fungal entomopathogens against bed bugs and cockroaches.

4.
Pest Manag Sci ; 78(1): 205-216, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34468070

RESUMO

BACKGROUND: Heat can be effective for bed bug elimination. However, in some cases bed bugs survive heat treatments. The objectives of this study were to determine the behavioral responses of bed bugs to rising harborage temperatures (23.0-49.0 °C) and identify which heat shock protein (HSP) genes are expressed after heat exposure. First, a custom-made copper arena and harborage were used to determine the escape behaviors of six bed bug populations. Next, HSP gene expression responses of select populations were determined after heat exposure using real time quantitative polymerase chain reaction (RT-qPCR). RESULTS: Analysis of the 25 min behavioral experiment data found that harborage top temperatures associated with 25%, 50% and 75% probabilities of bed bugs to flee the harborage did not differ significantly between populations. Also, the percentage of insects that escaped from heated areas and survived (4.0-12.0%) was not different between populations. However, when specific temperatures at which successful escapes occurred were statistically compared, the Poultry House population was found to flee the harborage at statistically higher temperatures (43.6 ± 0.5 °C) than others (40.5 ± 0.6-42.0 ± 0.7 °C). The RT-qPCR experiments revealed that the HSP70.1, HSP70.3, and Putative Small HSP genes were significantly up-regulated 15 min, 2, and 4 h post-heat exposure and decreased back to baseline levels by 24 h. CONCLUSIONS: This study shows that when harborage top temperatures approach 40.0-43.0 °C, bed bugs will disperse in search for cooler areas. This work implicates the HSP70.1, HSP70.3, and Putative Small HSP genes in heat induced stress recovery of bed bugs. © 2021 Society of Chemical Industry.


Assuntos
Percevejos-de-Cama , Ectoparasitoses , Animais , Percevejos-de-Cama/genética , Expressão Gênica , Proteínas de Choque Térmico/genética , Temperatura Alta
5.
PLoS One ; 14(2): e0211677, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30731005

RESUMO

The global population growth of the bed bug, Cimex lectularius (L.), is attributed to their cryptic behavior, diverse insecticide resistance mechanisms, and lack of public awareness. Bed bug control can be challenging and typically requires chemical and non-chemical treatments. One common non-chemical method for bed bug management is thermal remediation. However, in certain instances, bed bugs are known to survive heat treatments. Bed bugs may be present after a heat treatment due to (i) abiotic factors associated with the inability to achieve lethal temperatures in harborage areas for a sufficient time period, (ii) re-infestation from insects that escaped to cooler areas during a heat treatment or (iii) development of physiological resistance that allows them to survive heat exposure. Previous research has investigated the optimal temperature and exposure time required for either achieving complete mortality or sublethally affecting their growth and development. However, no research has examined bed bug populations for their ability to develop resistance to heat exposure and variation in thermo-tolerance between different bed bug strains. The goals of this study were: i) to determine if bed bugs could be selected for heat resistance under a laboratory selection regime, and ii) to determine if bed bug populations with various heat exposure histories, insecticide resistance profiles, and geographic origins have differential temperature tolerances using two heat exposure techniques (step-function and ramp-function). Selection experiments found an initial increase in bed bug survivorship; however, survivorship did not increase past the fourth generation. Sublethal exposure to heat significantly reduced bed bug feeding and, in some cases, inhibited development. The step-function exposure technique revealed non-significant variation in heat tolerance between populations and the ramp-function exposure technique provided similar results. Based on these study outcomes, the ability of bed bugs to develop heat resistance appears to be limited.


Assuntos
Percevejos-de-Cama/fisiologia , Animais , Fenômenos Bioquímicos/fisiologia , Ectoparasitoses/fisiopatologia , Temperatura Alta , Controle de Insetos/métodos , Resistência a Inseticidas/fisiologia , Inseticidas/farmacologia , Piretrinas/farmacologia
6.
Sci Rep ; 9(1): 8292, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165746

RESUMO

The German cockroach (Blattella germanica L.) is a worldwide pest that lives exclusively in human environments. B. germanica threatens human health by producing asthma-triggering allergens, vectoring pathogenic/antibiotic-resistant microbes, and by contributing to unhealthy indoor environments. While insecticides are essential for reducing cockroach populations and improving health outcomes, insecticide resistance has been a consistent barrier to cockroach control since the 1950s. We conducted seminal field studies to compare three insecticide resistance intervention strategies for cockroaches and evaluated resistance evolution across multiple generations. Using pre-treatment resistance assessment to drive decisions, we found that single active ingredient (AI) treatments can successfully eliminate cockroaches if starting resistance levels are low. We further established that rotation treatments intuitively reduce selection pressure, and are effective when insecticides with no/low resistance are used. We also found that mixture products containing thiamethoxam + λ-cyhalothrin AIs were universally ineffective and highly repellent; and finally, evolution of cross-resistance among AIs is a significant, previously unrealized challenge.


Assuntos
Blattellidae/genética , Evolução Molecular , Resistência a Inseticidas/genética , Inseticidas , Alérgenos , Animais , Bioensaio , Vetores de Doenças , Habitação , Illinois , Indiana , Controle de Insetos , Nitrilas , Piretrinas , Tiametoxam
7.
J Econ Entomol ; 110(3): 1195-1202, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398497

RESUMO

Insecticide resistance is a major impediment for effective control of Cimex lectularius L. Previous resistance detection studies with bed bugs have focused on certain pyrethroid, neonicotinoid, organochlorine, organophosphate, and carbamate insecticides. Within the pyrethroid class, resistance studies have mostly been limited to deltamethrin, lambda-cyhalothrin, and alpha- and beta-cyfluthrin. The goal of this study was to develop diagnostic concentration bioassays for assessing bed bug susceptibility levels to chlorfenapyr- and bifenthrin-containing products. First, glass vial and filter paper bioassay methods were compared for their utility in susceptibility monitoring. Statistical comparison of toxicity data between bioassays indicated that the vial assay was less confounded by assay susbtrate effects, required less insecticide, and was faster, especially for chlorfenapyr. Next, using vial diagnostic concentrations (LC99) for each insecticide, 10 laboratory-adapted field strains and the Harlan lab-susceptible strain were screened for susceptibility to chlorfenapyr and bifenthrin. The results of this study reveal recent bed bug susceptibility levels to certain chlorfenapyr- and bifenthrin-containing products. Reduced susceptibility was detected in three and five field strains to chlorfenapyr and bifenthrin, respectively. Detection of reduced susceptibility suggests that certain strains may be segregating toward greater chlorfenapyr and bifenthrin resistance. These results merit continuous resistance monitoring efforts to detect chlorfenapyr and bifenthrin susceptibility shifts. Additionally, to reduce insecticide selection pressures and delay resistance development, adoption of integrated bed bug control strategies that combine chemical and nonchemical methods is recommended.


Assuntos
Percevejos-de-Cama/efeitos dos fármacos , Controle de Insetos/métodos , Resistência a Inseticidas , Inseticidas/farmacologia , Piretrinas/farmacologia , Piretrinas/farmacocinética , Animais , Masculino , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA