Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 16(7): 1903-14, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498874

RESUMO

Obesity is a major risk factor driving the global type II diabetes pandemic. However, the molecular factors linking obesity to disease remain to be elucidated. Gender differences are apparent in humans and are also observed in murine models. Here, we link these differences to expression of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), which, upon HFD feeding, becomes significantly reduced in the skeletal muscle and adipose tissue of male but not female mice. Strikingly, restoring 4E-BP1 expression in male mice protects them against HFD-induced obesity and insulin resistance. Male 4E-BP1 transgenic mice also exhibit reduced white adipose tissue accumulation accompanied by decreased circulating levels of leptin and triglycerides. Importantly, transgenic 4E-BP1 male mice are also protected from aging-induced obesity and metabolic decline on a normal diet. These results demonstrate that 4E-BP1 is a gender-specific suppressor of obesity that regulates insulin sensitivity and energy metabolism.


Assuntos
Tecido Adiposo Branco/metabolismo , Envelhecimento/genética , Proteínas de Transporte/genética , Resistência à Insulina/genética , Obesidade/genética , Fosfoproteínas/genética , Proteínas Adaptadoras de Transdução de Sinal , Tecido Adiposo Branco/patologia , Envelhecimento/patologia , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Dieta Hiperlipídica/efeitos adversos , Fatores de Iniciação em Eucariotos , Feminino , Regulação da Expressão Gênica , Humanos , Leptina/sangue , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosfoproteínas/metabolismo , Fatores Sexuais , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transgenes , Triglicerídeos/sangue
2.
J Clin Invest ; 125(8): 2952-64, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26121750

RESUMO

Eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) is a key downstream effector of mTOR complex 1 (mTORC1) that represses cap-dependent mRNA translation initiation by sequestering the translation initiation factor eIF4E. Reduced mTORC1 signaling is associated with life span extension and improved metabolic homeostasis, yet the downstream targets that mediate these benefits are unclear. Here, we demonstrated that enhanced 4E-BP1 activity in mouse skeletal muscle protects against age- and diet-induced insulin resistance and metabolic rate decline. Transgenic animals displayed increased energy expenditure; altered adipose tissue distribution, including reduced white adipose accumulation and preserved brown adipose mass; and were protected from hepatic steatosis. Skeletal muscle-specific 4E-BP1 mediated metabolic protection directly through increased translation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and enhanced respiratory function. Non-cell autonomous protection was through preservation of brown adipose tissue metabolism, which was increased in 4E-BP1 transgenic animals during normal aging and in a response to diet-induced type 2 diabetes. Adipose phenotypes may derive from enhanced skeletal muscle expression and secretion of the known myokine FGF21. Unlike skeletal muscle, enhanced adipose-specific 4E-BP1 activity was not protective but instead was deleterious in response to the same challenges. These findings indicate that regulation of 4E-BP1 in skeletal muscle may serve as an important conduit through which mTORC1 controls metabolism.


Assuntos
Envelhecimento/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento/genética , Envelhecimento/patologia , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fatores de Iniciação em Eucariotos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/patologia , Obesidade/genética , Obesidade/patologia , Especificidade de Órgãos/genética , Consumo de Oxigênio/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfoproteínas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell Metab ; 20(4): 626-38, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25295787

RESUMO

Macroautophagy (hereafter autophagy) is the major pathway by which macromolecules and organelles are degraded. Autophagy is regulated by the mTOR signaling pathway-the focal point for integration of metabolic information, with mTORC1 playing a central role in balancing biosynthesis and catabolism. Of the various inputs to mTORC1, the amino acid sensing pathway is among the most potent. Based upon transcriptome analysis of neurons subjected to nutrient deprivation, we identified let-7 microRNA as capable of promoting neuronal autophagy. We found that let-7 activates autophagy by coordinately downregulating the amino acid sensing pathway to prevent mTORC1 activation. Let-7 induced autophagy in the brain to eliminate protein aggregates, establishing its physiological relevance for in vivo autophagy modulation. Moreover, peripheral delivery of let-7 anti-miR repressed autophagy in muscle and white fat, suggesting that let-7 autophagy regulation extends beyond CNS. Hence, let-7 plays a central role in nutrient homeostasis and proteostasis regulation in higher organisms.


Assuntos
Aminoácidos/metabolismo , Autofagia , MicroRNAs/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Sequência de Bases , Encéfalo/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Músculo Esquelético/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Alinhamento de Sequência , Transdução de Sinais
4.
Sci Transl Med ; 4(142): 142ra97, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22786682

RESUMO

Huntington's disease (HD) is caused by CAG repeat expansions in the huntingtin (htt) gene, yielding proteins containing polyglutamine repeats that become misfolded and resist degradation. Previous studies demonstrated that mutant htt interferes with transcriptional programs coordinated by the peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a regulator of mitochondrial biogenesis and oxidative stress. We tested whether restoration of PGC-1α could ameliorate the symptoms of HD in a mouse model. We found that PGC-1α induction virtually eliminated htt protein aggregation and ameliorated HD neurodegeneration in part by attenuating oxidative stress. PGC-1α promoted htt turnover and the elimination of protein aggregates by activating transcription factor EB (TFEB), a master regulator of the autophagy-lysosome pathway. TFEB alone was capable of reducing htt aggregation and neurotoxicity, placing PGC-1α upstream of TFEB and identifying these two molecules as important therapeutic targets in HD and potentially other neurodegenerative disorders caused by protein misfolding.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Doença de Huntington/patologia , Doença de Huntington/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/toxicidade , Transativadores/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Doença de Huntington/complicações , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Degeneração Neural/complicações , Degeneração Neural/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fenótipo , Estrutura Quaternária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição , Ativação Transcricional/genética , Expansão das Repetições de Trinucleotídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA