Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723550

RESUMO

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Assuntos
Técnicas de Cultura de Células/métodos , Hematopoese , Macrófagos/fisiologia , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Embrião de Mamíferos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese
3.
Biochem Biophys Res Commun ; 638: 200-209, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462494

RESUMO

Advances in pharmacy and medicine have led to the development of many anti-cancer and molecular targeted agents; however, there are few agents capable of suppressing metastasis. To prevent cancer recurrence, it is essential to develop novel agents for inhibiting metastasis. Coumarin-based compounds have multiple pharmacological activities including anti-cancer effects. We screened a compound library constructed at Kyoto Pharmaceutical University and showed that 7,8-dihydroxy-3-(4'-hydroxyphenyl)coumarin (DHC) inhibited invasion and migration of LM8 mouse osteosarcoma cells and 143B human osteosarcoma cells in a concentration-dependent manner. DHC decreased intracellular actin filament formation by downregulating Rho small GTP-binding proteins such as RHOA, RAC1, and CDC42, which regulate actin reorganization. However, DHC did not downregulate the corresponding mRNA transcripts, whereas it downregulated Rho small GTP-binding proteins in the presence of cycloheximide, suggesting that DHC enhances the degradation of these proteins. DHC treatment inhibited metastasis and prolonged overall survival in a spontaneous metastasis mouse model. These results indicate that DHC has the potential to suppress metastasis of osteosarcoma cells by downregulating Rho small GTP-binding proteins.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Humanos , Movimento Celular , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Chem Pharm Bull (Tokyo) ; 71(11): 819-823, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730339

RESUMO

Exosomes are a type of extracellular vesicles that contain diverse molecules and are present in our body fluids. They play a crucial role in transporting materials and transmitting signals between cells. Currently, there have been numerous reports on the use of exosomes in drug delivery systems (DDS). However, most existing methods for utilizing exosomes in DDS require the isolation and purification of exosomes, which raises concerns about yield and potential damage to the exosomes. Recently, we have developed a novel DDS called "ExomiR-Tracker" that harnesses exosomes without the need for isolation and purification. This system aims to deliver nucleic acid drugs effectively. ExomiR-Tracker consists of an anti-exosome antibody equipped with nona-D-arginines (9 mer) and nucleic acid drugs which have complementary sequence of target microRNA (anti-miR). In this study, we modified ExomiR-Tracker by incorporating branched nona-D-arginines (9 + 9 mer) molecules (referred to as Branch ExomiR-Tracker) and evaluated its efficacy in lung adenocarcinoma cells (A549 cells). The improved complex formation ability and enhanced cellular uptake of anti-miR, demonstrated by our findings, highlight the advantages of incorporating branched oligoarginine peptides into the ExomiR-Tracker platform. These results represent significant progress in revealing the effectiveness of Branch ExomiR-Tracker against adhesive cancer cells, which has not been shown to be effective with the conventional Linear ExomiR-Tracker.


Assuntos
Adenocarcinoma de Pulmão , Exossomos , Humanos , Exossomos/química , Oligonucleotídeos Antissenso/análise , Antagomirs/análise , Sistemas de Liberação de Medicamentos/métodos , Adenocarcinoma de Pulmão/tratamento farmacológico
5.
Biochem Biophys Res Commun ; 588: 47-54, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952469

RESUMO

Human γδ T cells expressing Vγ9Vδ2 T cell receptors exert a robust response to pathogens and malignant cells. These cells are activated by BTN3A1, which is expressed by pathogen-derived phosphoantigens (pAgs) or host-derived pAgs that accumulate in transformed cells or in cells exposed to aminobisphosphonates. Activated Vδ2 (+) T cells exert multiple effector functions; therefore, they are a promising candidate for immunotherapy. However, not all donors have γδ T cells with adequate proliferative activity. Here, we performed ex vivo culture of γδ T cells from 20 healthy donors and explored factors that may affect their expansion efficiency. Consistent with previous studies, we found that amplification of γδ T cells requires CD14+ monocytes to act as accessory cells. We also show here that surface expression of BTN3A1 by monocytes correlates positively with γδ T cell expansion. Moreover, treatment with BTN3A1-Fc increased the expansion efficiency of peripheral blood mononuclear cells (PBMCs) from donors harboring γδ T cells with poor expansion capacity. Taken together, the data suggest that the level of BTN3A1 expressed on the surface of monocytes is a useful biomarker for predicting the degree of expansion of γδ T cells.


Assuntos
Antígenos CD/genética , Butirofilinas/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Receptores de Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Adulto , Idoso , Antígenos CD/metabolismo , Butirofilinas/metabolismo , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Receptores Fc/metabolismo , Ácido Zoledrônico/farmacologia
6.
Biochem Biophys Res Commun ; 588: 147-153, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954522

RESUMO

Among acute leukemias, mixed-lineage leukemia-rearranged (MLL-r) leukemia is associated with poor prognosis. Bromodomain and extra-terminal inhibitors (BETi) are promising agents for treatment of hematological malignancies; however, the mechanisms underlying sensitivity to BETi and biomarkers to predict sensitivity are yet to be clarified. Here, we established OTX015-resistant MLL-r cell lines (OTX015-R cells) and used them to explore therapeutic targets in BETi-resistant MLL-r leukemia. OTX015-R cells exhibited resistance to various BETi, and levels of bromodomain-containing protein 4 (BRD4) and BRD4-regulated molecules, such as c-MYC and B-cell/CLL lymphoma-2 (BCL-2), were remarkably increased in OTX015-R cells relative to those in the parental cells; however, BRD4 mRNA transcript levels were not elevated. These results suggest that overexpression of BRD4 protein, through suppression of BRD4 degradation, may contribute to BETi-resistance. Notably, expression of ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5) was increased in OTX015-R cells. Further, a UCHL5 inhibitor, b-AP15, and UCHL5 knockdown had antitumor effects by degrading BRD4. In addition, sensitivity to OTX015 was partially recovered in OTX015-R cells pretreated with b-AP15. Furthermore, cyclin-dependent kinase 4/6 (CDK4/6) inhibition decreased UCHL5 expression, suppressed OTX015-R cell proliferation, and induced apoptosis. These results indicate that the CDK4/6-UCHL5-BRD4 axis confers resistance to BETi by suppressing BRD4 degradation. We propose that this pathway is a potential novel therapeutic target in BETi-resistant MLL-r leukemia with BRD4 overexpression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Leucemia/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/metabolismo , Acetanilidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Compostos Heterocíclicos com 3 Anéis/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores
7.
Biochem Biophys Res Commun ; 590: 49-54, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34971957

RESUMO

Acute lymphoblastic leukemia with chromosomal rearrangements involving the mixed-lineage leukemia (MLL) gene (MLL-r ALL) remains an incurable disease. Thus, development of a safe and effective therapeutic agent to treat this disease is crucial to address this unmet medical need. BRD4, a member of the bromodomain and extra-terminal domain (BET) protein family, and cyclic AMP response element binding protein binding protein (CBP) and p300, two paralogous histone acetyltransferases, are all considered cancer drug targets and simultaneous targeting of these proteins may have therapeutic advantages. Here, we demonstrate that a BET/CBP/p300 multi-bromodomain inhibitor, CN470, has anti-tumor activity against MLL-r ALL in vitro and in vivo. CN470, potently inhibited ligand binding to the bromodomains of BRD4, CBP, and p300 and suppressed the growth of MLL-r ALL cell lines and patient-derived cells with MLL rearrangements. CN470 suppressed mRNA and protein expression of MYC and induced apoptosis in MLL-r ALL cells, following a cell cycle arrest in the G1 phase. Moreover, CN470 reduced BRD4 binding to acetylated histone H3. The in vivo effects of CN470 were investigated using SEMLuc/GFP cells expressing luminescent markers in an orthotopic mouse model. Mice administered CN470 daily had prolonged survival compared to the vehicle group. Further, CN470 also showed anti-tumor effects against an MLL-r ALL patient-derived xenograft model. These findings suggest that inhibition of BET/CBP/p300 by the multi-bromodomain inhibitor, CN470, represents a promising therapeutic approach against MLL-r ALL.


Assuntos
Antineoplásicos/farmacologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proteína p300 Associada a E1A/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Rearranjo Gênico/efeitos dos fármacos , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biochem Biophys Res Commun ; 535: 73-79, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33341676

RESUMO

The Wnt/ß-catenin pathway is an attractive target for the treatment of acute myelogenous leukemia (AML), since aberrant activation of the Wnt/ß-catenin pathway contributes to carcinogenesis in various types of cancers including AML. Screening of an in-house compound library, constructed at Kyoto Pharmaceutical University, identified a novel compound designated "31" that was found to be an inhibitor of the Wnt/ß-catenin pathway. The compound inhibited T-cell factor (TCF) activity in a TCF firefly luciferase-reporter assay and suppressed the proliferation of several human AML cell lines in a dose-dependent manner. Compound 31 arrested the cell cycle of AML cells at the G1 stage and induced apoptosis. Decrease in protein and mRNA expression level of Wnt pathway-related molecules was confirmed by the analyses of western blotting and quantitative reverse transcription-polymerase chain reaction. In addition, compound 31 combined with idarubicin synergistically inhibited the proliferation of AML cells. In conclusion, these results strongly suggest that compound 31 has potential as a novel anti-AML agent targeting the Wnt/ß-catenin signaling pathway.


Assuntos
Dipeptídeos/farmacologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Antineoplásicos/análise , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dipeptídeos/química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Idarubicina/farmacologia , Luciferases/metabolismo
9.
Biochem Biophys Res Commun ; 573: 132-139, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34407491

RESUMO

Human γδ T cells expressing Vγ9Vδ2 T cell receptors play a crucial role in the innate immune system and have an attracted interest as effector cells in adoptive cellular immunotherapy. However, the efficacy of adoptive cellular immunotherapy for the treatment of tumors requires overcoming the immunosuppressive microenvironment. αß T cell inhibition in the tumor microenvironment is associated with programmed death-ligand 1 (PD-L1) expression level. Vγ9Vδ2 T cells (abbreviated as γδ T cells here) exert potent cytotoxic effects in various cancers; however, γδ T cell activity in relation to the level of PD-L1 expression in cancer cells remains unclear, and the association between the PD-1/PD-L1 axis and γδ T cell cytotoxicity needs to be investigated. In this study, PD-1 blockade did not increase the cytotoxicity of γδ T cells against PD-L1high cancer cells. However, the anti-PD-L1 monoclonal antibody (mAb) enhanced the cytotoxicity of γδ T cells against a subset of cancer cells, whereas PD-L1 knockdown did not increase the cytotoxicity of γδ T cells. We also found that the expression levels of PD-L1 were positively correlated with the changes of γδ T cells cytotoxicity induced by anti-PD-L1 mAb. These observations suggest that anti-PD-L1 mAb treatment adds ADCC activity to the cytotoxicity of γδ T cells itself against PD-L1high cancer cells. The present results suggest that ex vivo expanded γδ T cells have antitumor activity independently of PD-L1 expression and may be promising effector cells for γδ T cell immunotherapy.


Assuntos
Antígeno B7-H1/genética , Imunoterapia , Neoplasias/imunologia , Linfócitos T/imunologia , Antígeno B7-H1/imunologia , Humanos , Neoplasias/terapia , Células Tumorais Cultivadas
10.
Pulm Pharmacol Ther ; 70: 102057, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425215

RESUMO

Pulmonary fibrosis is a progressive disease with poor prognosis and limited therapeutic options. In this study, we evaluated the potential therapeutic effects of CG223, a novel inhibitor of bromodomain and extra-terminal motif (BET) proteins, on pulmonary fibrosis by focusing on the transforming growth factor-ß1 (TGF-ß1) pathway. In a murine model of bleomycin-induced pulmonary fibrosis, CG223 attenuated fibrosis while reducing the infiltration of inflammatory cells into the lungs. Fibroblasts expressing BRD4, a member of the BET protein family, were enriched in the tissue regions corresponding to bleomycin-induced fibrotic lesions. Additionally, pulmonary fibroblasts isolated from bleomycin-instilled mice showed a significantly increased association of BRD4 with the promoters of two pro-fibrotic genes linked to the entry into the TGF-ß1 autocrine/paracrine loop, thrombospondin 1 (Thbs1) and integrin ß3 (Itgb3), as well as with the promoter of a myofibroblast marker gene, actin alpha 2 (Acta2). Subsequent in vitro studies with murine primary lung fibroblasts showed that the mRNA induction of Thbs1, Itgb3, and Acta2 by TGF-ß1 can be inhibited by CG223 in a dose-dependent manner. Taken together, CG223-induced BRD4 inhibition suppressed lung fibrogenesis by affecting multiple genes, including those involved in the triggering of the TGF-ß1 autocrine/paracrine loop.


Assuntos
Bleomicina , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Fibroblastos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fatores de Transcrição , Fator de Crescimento Transformador beta1/genética
11.
Bioorg Med Chem Lett ; 45: 128161, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062253

RESUMO

Linderapyrone, a Wnt signal inhibitor was isolated from the methanolic extract of the stems and twigs of Lindera umbellata together with epi-(-)-linderol A. Linderapyrone inhibited TCF/ß-catenin transcriptional activity that was evaluated using cell-based TOPFlash luciferase assay system. To evaluate the structure-activity relationship and mechanism, we synthesized linderapyrone and its derivatives from piperitone. As the results of further bioassay for synthesized compounds, we found both of pyrone and monoterpene moieties were necessary for inhibitory effect. cDNA microarray analysis in a linderapyrone derivative treated human colorectal cancer cells showed that this compound downregulates Wnt signaling pathway. Moreover, we successes to synthesize the derivative of linderapyrone that has stronger inhibitory effect than linderapyrone and ICG-001 (positive control).


Assuntos
Lindera/química , Fatores de Transcrição TCF/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
12.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445615

RESUMO

Human γδ T cells show potent cytotoxicity against various types of cancer cells in a major histocompatibility complex unrestricted manner. Phosphoantigens and nitrogen-containing bisphosphonates (N-bis) stimulate γδ T cells via interaction between the γδ T cell receptor (TCR) and butyrophilin subfamily 3 member A1 (BTN3A1) expressed on target cells. γδ T cell immunotherapy is classified as either in vivo or ex vivo according to the method of activation. Immunotherapy with activated γδ T cells is well tolerated; however, the clinical benefits are unsatisfactory. Therefore, the antitumor effects need to be increased. Administration of γδ T cells into local cavities might improve antitumor effects by increasing the effector-to-target cell ratio. Some anticancer and molecularly targeted agents increase the cytotoxicity of γδ T cells via mechanisms involving natural killer group 2 member D (NKG2D)-mediated recognition of target cells. Both the tumor microenvironment and cancer stem cells exert immunosuppressive effects via mechanisms that include inhibitory immune checkpoint molecules. Therefore, co-immunotherapy with γδ T cells plus immune checkpoint inhibitors is a strategy that may improve cytotoxicity. The use of a bispecific antibody and chimeric antigen receptor might be effective to overcome current therapeutic limitations. Such strategies should be tested in a clinical research setting.


Assuntos
Citotoxicidade Imunológica/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo
13.
Biol Pharm Bull ; 43(8): 1253-1258, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741946

RESUMO

Long-term combination treatment with lenalidomide and low-dose dexamethasone is important to achieve a curative effect in patients with multiple myeloma (MM). In this study, the plasma concentration of lenalidomide was measured at 3 h after oral administration, when the drug is in the elimination phase and can be easily measured in outpatients, to identify factors that may lead to the discontinuation of this combination therapy. Patients were assigned to continuation or discontinuation of therapy groups, and the baseline characteristics of patients, lenalidomide concentration, and concentration/dose (C/D) ratios reflecting oral clearance were compared between the two groups. The efficacy and severity of adverse events were also compared. The results showed that patients who discontinued or modified treatment had low plasma concentrations of lenalidomide and C/D ratios, indicating high oral clearance of lenalidomide. The estimated creatinine clearance rate was negatively correlated with the C/D ratio. The plasma concentrations of lenalidomide were independent from kidney function and differed significantly among patients. Taken together, the results indicate that low plasma concentrations of lenalidomide and low C/D ratios may lead to discontinuation of combination therapy in patients with MM. This suggests that early measurement of lenalidomide plasma continuation would help to prevent discontinuation of therapy or a delay in modifying the dose of lenalidomide.


Assuntos
Dexametasona/administração & dosagem , Lenalidomida/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimioterapia Combinada , Feminino , Humanos , Lenalidomida/efeitos adversos , Lenalidomida/sangue , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade
14.
Biochem Biophys Res Commun ; 496(2): 490-496, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29309790

RESUMO

The emergence of new molecular targeting agents has improved the prognosis of patients with multiple myeloma (MM). However, MM remains incurable because MM stem cells are likely resistant to these agents. Thus, it is important to further investigate the biology of MM stem cells, which reside in the hypoxic bone marrow niche. In this study, we established and investigated the characteristics of hypoxia-adapted MM (HA-MM) cells, which could proliferate for more than six months under hypoxic conditions (1% O2). The G0 fraction of HA-MM cells was larger than that of parental MM cells under normoxic conditions (20% O2). HA-MM cells possess enhanced tumorigenicity in primary and secondary transplantation studies. HA-MM cells also exhibited increased mRNA levels of stem cell markers and an enhanced self-renewal ability, and thus demonstrated characteristics of MM stem cells. These cells overexpressed phosphorylated Smad2, and treatment with a transforming growth factor (TGF)-ß/Smad signaling inhibitor decreased their clonogenicity in a replating assay. In conclusion, MM cells adapted to long-exposure of hypoxia exhibit stem cell characters with TGF-ß/Smad pathway activation.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Proteína Smad2/genética , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/genética , Animais , Biomarcadores Tumorais/metabolismo , Hipóxia Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Feminino , Humanos , Imunofenotipagem , Camundongos , Camundongos Endogâmicos NOD , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Transplante de Neoplasias , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Células-Tronco/patologia , Análise de Sobrevida , Fator de Crescimento Transformador beta/metabolismo
15.
Biochem Biophys Res Commun ; 496(1): 218-224, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29307834

RESUMO

Previous studies show that gamma-glutamylcyclotransferase (GGCT) is expressed at high levels in various cancer tissues and that its knockdown inhibits MCF7 cancer cell growth via upregulation of p21WAF1/CIP1 (p21). However, the detailed underlying mechanism is unclear. Here, we used yeast two-hybrid screening and co-immunoprecipitation to identify Prohibitin-2 (PHB2) as a novel protein that interacts with GGCT. We also show that nuclear expression of PHB2 in MCF7 cells falls upon GGCT knockdown, and that overexpression of PHB2 inhibits p21 upregulation. A chromatin immunoprecipitation assay revealed that nuclear PHB2 proteins bind to the p21 promoter, and that this interaction is abrogated by GGCT knockdown. Moreover, knockdown of PHB2 alone led to significant upregulation of p21 and mimicked the cellular events induced by GGCT depletion, including G0/G1 arrest, cellular senescence, and growth inhibition, in a p21 induction-dependent manner. Taken together, the results indicate that PHB2 plays a central role in p21 upregulation following GGCT knockdown and as such may promote deregulated proliferation of cancer cells by suppressing p21.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Repressoras/metabolismo , gama-Glutamilciclotransferase/metabolismo , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Proibitinas , Ligação Proteica , gama-Glutamilciclotransferase/genética
16.
Biochem Biophys Res Commun ; 484(2): 262-268, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115161

RESUMO

Multiple myeloma (MM) is characterized by the clonal proliferation of neoplastic plasma cells. Despite a stream of new molecular targets based on better understanding of the disease, MM remains incurable. Epigenomic abnormalities contribute to the pathogenesis of MM. bromodomain 4 (BRD4), a member of the bromodomain and extraterminal (BET) family, binds to acetylated histones during M/G1 transition in the cell cycle promoting progression to S phase. In this study, we investigated the effects of a novel BET inhibitor CG13250 on MM cells. CG13250 inhibited ligand binding to BRD4 in a dose-dependent manner and with an IC50 value of 1.1 µM. It inhibited MM proliferation in a dose-dependent manner and arrested cells in G1, resulting in the induction of apoptosis through caspase activation. CG13250 inhibited the binding of BRD4 to c-MYC promoter regions suppressing the transcription of the c-MYC gene. Administered in vivo, CG13250 significantly prolonged survival of an orthotopic MM-bearing mice. In conclusion, CG13250 is a novel bromodomain inhibitor that is a promising molecular targeting agent against MM.


Assuntos
Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Mieloma Múltiplo/patologia , Proteínas Nucleares/antagonistas & inibidores , Quinolonas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Genes myc , Humanos , Camundongos , Mieloma Múltiplo/genética , Regiões Promotoras Genéticas , Análise de Sobrevida
17.
Biochem Biophys Res Commun ; 471(1): 63-7, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26845352

RESUMO

Daphnetin, 7,8-dihydroxycoumarin, present in main constituents of Daphne odora var. marginatai, has multiple pharmacological activities including anti-proliferative effects in cancer cells. In this study, using a Transwell system, we showed that daphnetin inhibited invasion and migration of highly metastatic murine osteosarcoma LM8 cells in a dose-dependent manner. Following treatment by daphnetin, cells that penetrated the Transwell membrane were rounder than non-treated cells. Immunofluorescence analysis revealed that daphnetin decreased the numbers of intracellular stress fibers and filopodia. Moreover, daphnetin treatment dramatically decreased the expression levels of RhoA and Cdc42. In summary, the dihydroxycoumarin derivative daphnetin inhibits the invasion and migration of LM8 cells, and therefore represents a promising agent for use against metastatic cancer.


Assuntos
Movimento Celular/efeitos dos fármacos , Osteossarcoma/patologia , Osteossarcoma/fisiopatologia , Umbeliferonas/administração & dosagem , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Camundongos , Invasividade Neoplásica , Osteossarcoma/tratamento farmacológico
18.
BMC Cancer ; 16(1): 748, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27658708

RESUMO

BACKGROUND: Chromosome 7 open reading frame 24 (C7orf24) was originally identified as a highly expressed protein in various types of cancer, and later shown to be a γ-glutamylcyclotransferase (GGCT). GGCT depletion in cancer cells has anti-proliferative effects in vitro and in vivo, and it is therefore considered a promising candidate as a therapeutic target. However, the cellular events induced by GGCT depletion remain unclear. METHODS: GGCT was depleted by siRNA in MCF7, MDA-MB-231, PC3, A172, Hela, and LNCaP cells. Induction of cellular senescence was evaluated with senescence-associated ß-galactosidase (SA-ß-Gal) staining. Expression levels of p21WAF1/CIP1 and p16INK4A were assessed by qRT-PCR and Western blotting. Effects of simultaneous double knockdown of p21WAF1/CIP1 and p16INK4A together with GGCT on cell cycle regulation and cell growth was measured by flow cytometry, and trypan blue dye exclusion test. RESULTS: We found that GGCT knockdown induces significant cellular senescence in various cancer cells. Cyclin dependent kinase inhibitor p21WAF1/CIP1 and/or p16INK4A were upregulated in all cell lines tested. Simultaneous knockdown of p21WAF1/CIP1 recovered the cell cycle arrest, attenuated cellular senescence induction, and rescued the subsequent growth inhibition in GGCT-silenced MCF7 breast cancer cells. In contrast, in GGCT silenced MDA-MB-231 breast cancer cells, GGCT depletion upregulated p16INK4A, which played a regulatory role in senescence induction, instead of p21WAF1/CIP1. CONCLUSIONS: Our findings demonstrate that induction of cellular senescence mediated by the upregulation of cyclin-dependent kinase inhibitors is a major event underlying the anti-proliferative effect of GGCT depletion in breast cancer cells, highlighting the potential of GGCT blockade as a therapeutic strategy to induce cellular senescence.

19.
Cancer Sci ; 106(6): 665-671, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25788321

RESUMO

The canonical Wnt/ß-catenin pathway plays an important role in different developmental processes through the regulation of stem cell functions. In the activation of the canonical Wnt/ß-catenin pathway, ß-catenin protein is imported into the nucleus and activates transcription of target genes including cyclin D1 and c-myc. Aberrant activation of the Wnt/ß-catenin pathway contributes to carcinogenesis and malignant behaviors, and Wnt signaling is essential for the maintenance of cancer stem cells. The canonical Wnt/ß-catenin pathway has been investigated extensively as a target in cancer treatment and several specific inhibitors of this signaling pathway have been identified through high-throughput screening. In this review, the significance of the canonical Wnt/ß-catenin pathway in hematological carcinogenesis and screening methods for specific inhibitors are discussed.


Assuntos
Neoplasias Hematológicas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Medula Óssea/fisiologia , Epigênese Genética , Neoplasias Hematológicas/etiologia , Neoplasias Hematológicas/genética , Humanos , Células-Tronco Neoplásicas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia
20.
Biochem Biophys Res Commun ; 463(4): 650-5, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26047704

RESUMO

γδT cell receptor (TCR)-positive T cells, which control the innate immune system, display anti-tumor immunity as well as other non-immune-mediated anti-cancer effects. γδT cells expanded ex vivo by nitrogen-containing bisphosphonate (N-BP) treatment can kill tumor cells. N-BP inhibits farnesyl pyrophosphate synthase in the mevalonate pathway, resulting in the accumulation of isopentenyl pyrophosphate (IPP), which is a stimulatory antigen for γδT cells. We have previously observed that as they get closer, migrating γδT cells increase in speed toward target multiple myeloma (MM) cells. In the present study, we investigated the γδT cell chemotactic factors involving using a micro total analysis system-based microfluidic cellular analysis device. The addition of supernatant from RPMI8226 MM cells treated with the N-BP zoledronic acid (ZOL) or the addition of IPP to the device induced chemotaxis of γδT cells and increased the speed of migration compared to controls. Analysis of the ZOL-treated RPMI8226 cell supernatant revealed that it contained IPP secreted in a ZOL-dose-dependent manner. These observations indicate that IPP activates the chemotaxis of γδT cells toward target MM cells treated with ZOL.


Assuntos
Quimiotaxia de Leucócito/efeitos dos fármacos , Difosfonatos/farmacologia , Hemiterpenos/farmacologia , Imidazóis/farmacologia , Mieloma Múltiplo/metabolismo , Compostos Organofosforados/farmacologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Hemiterpenos/metabolismo , Humanos , Mieloma Múltiplo/patologia , Linfócitos T/imunologia , Ácido Zoledrônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA