Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell ; 143(2): 299-312, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20946987

RESUMO

Reproductive cessation is perhaps the earliest aging phenotype that humans experience. Similarly, reproduction of Caenorhabditis elegans ceases in mid-adulthood. Although somatic aging has been studied in both worms and humans, mechanisms regulating reproductive aging are not yet understood. Here, we show that TGF-ß Sma/Mab and Insulin/IGF-1 signaling regulate C. elegans reproductive aging by modulating multiple aspects of the reproductive process, including embryo integrity, oocyte fertilizability, chromosome segregation fidelity, DNA damage resistance, and oocyte and germline morphology. TGF-ß activity regulates reproductive span and germline/oocyte quality noncell-autonomously and is temporally and transcriptionally separable from its regulation of growth. Chromosome segregation, cell cycle, and DNA damage response genes are upregulated in TGF-ß mutant oocytes, decline in aged mammalian oocytes, and are critical for oocyte quality maintenance. Our data suggest that C. elegans and humans share many aspects of reproductive aging, including the correlation between reproductive aging and declining oocyte quality and mechanisms determining oocyte quality.


Assuntos
Caenorhabditis elegans/fisiologia , Insulina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Envelhecimento , Animais , Apoptose , Caenorhabditis elegans/citologia , Humanos , Oócitos/fisiologia , Reprodução
2.
Nat Metab ; 6(4): 724-740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418585

RESUMO

Reproductive ageing is one of the earliest human ageing phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline; however, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to Caenorhabditis elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Notably, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with vitamin B1, a cofactor needed for BCAA metabolism.


Assuntos
Envelhecimento , Aminoácidos de Cadeia Ramificada , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mitocôndrias , Oócitos , Reprodução , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Reprodução/fisiologia , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Oócitos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Espécies Reativas de Oxigênio/metabolismo
3.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370685

RESUMO

Reproductive aging is one of the earliest human aging phenotypes, and mitochondrial dysfunction has been linked to oocyte quality decline. However, it is not known which mitochondrial metabolic processes are critical for oocyte quality maintenance with age. To understand how mitochondrial processes contribute to C. elegans oocyte quality, we characterized the mitochondrial proteomes of young and aged wild-type and long-reproductive daf-2 mutants. Here we show that the mitochondrial proteomic profiles of young wild-type and daf-2 worms are similar and share upregulation of branched-chain amino acid (BCAA) metabolism pathway enzymes. Reduction of the BCAA catabolism enzyme BCAT-1 shortens reproduction, elevates mitochondrial reactive oxygen species levels, and shifts mitochondrial localization. Moreover, bcat-1 knockdown decreases oocyte quality in daf-2 worms and reduces reproductive capability, indicating the role of this pathway in the maintenance of oocyte quality with age. Importantly, oocyte quality deterioration can be delayed, and reproduction can be extended in wild-type animals both by bcat-1 overexpression and by supplementing with Vitamin B1, a cofactor needed for BCAA metabolism.

4.
PLoS Biol ; 8(5): e1000372, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20502519

RESUMO

Of all the age-related declines, memory loss is one of the most devastating. While conditions that increase longevity have been identified, the effects of these longevity-promoting factors on learning and memory are unknown. Here we show that the C. elegans Insulin/IGF-1 receptor mutant daf-2 improves memory performance early in adulthood and maintains learning ability better with age but, surprisingly, demonstrates no extension in long-term memory with age. By contrast, eat-2 mutants, a model of Dietary Restriction (DR), exhibit impaired long-term memory in young adulthood but maintain this level of memory longer with age. We find that crh-1, the C. elegans homolog of the CREB transcription factor, is required for long-term associative memory, but not for learning or short-term memory. The expression of crh-1 declines with age and differs in the longevity mutants, and CREB expression and activity correlate with memory performance. Our results suggest that specific longevity treatments have acute and long-term effects on cognitive functions that decline with age through their regulation of rate-limiting genes required for learning and memory.


Assuntos
Envelhecimento/fisiologia , Ração Animal , Insulina/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Transdução de Sinais , Animais , Aprendizagem por Associação , Comportamento Animal , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quimiotaxia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
5.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33666644

RESUMO

A hallmark of aging is immunosenescence, a decline in immune functions, which appeared to be inevitable in living organisms, including Caenorhabditis elegans. Here, we show that genetic inhibition of the DAF-2/insulin/IGF-1 receptor drastically enhances immunocompetence in old age in C. elegans. We demonstrate that longevity-promoting DAF-16/FOXO and heat-shock transcription factor 1 (HSF-1) increase immunocompetence in old daf-2(-) animals. In contrast, p38 mitogen-activated protein kinase 1 (PMK-1), a key determinant of immunity, is only partially required for this rejuvenated immunity. The up-regulation of DAF-16/FOXO and HSF-1 decreases the expression of the zip-10/bZIP transcription factor, which in turn down-regulates INS-7, an agonistic insulin-like peptide, resulting in further reduction of insulin/IGF-1 signaling (IIS). Thus, reduced IIS prevents immune aging via the up-regulation of anti-aging transcription factors that modulate an endocrine insulin-like peptide through a feedforward mechanism. Because many functions of IIS are conserved across phyla, our study may lead to the development of strategies against immune aging in humans.


Assuntos
Envelhecimento/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Regulação para Baixo/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Longevidade/fisiologia , Receptor de Insulina/metabolismo , Ativação Transcricional/fisiologia , Regulação para Cima/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA