Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34572653

RESUMO

H. pylori (Helicobacter pylori) causes a common chronic infectious disease and infects around 4.4 billion people worldwide. H. pylori was classified as a member of the primary class of stomach cancer (stomach adenocarcinoma). Hence, this study was conducted to design a novel lactobionic acid (LBA)-coated Zn-MOFs to enhance bactericidal activity of Amoxicillin (AMX) against H. pylori. The synthesized Zn-MOFs were characterized by various techniques which included Dynamic Light Scattering (DLS), Fourier Transform Infrared (FT-IR) Spectroscopy, Powder X-ray diffraction, scanning electron microscope, and atomic force microscope. They were capable of encapsulating an increased amount of AMX and investigated for their efficacy to enhance the antibacterial potential of their loaded drug candidate. Interestingly, it was found that LBA-coated Zn-MOFs significantly reduced the IC50, MIC, and MBIC values of AMX against H. pylori. Morphological investigation of treated bacterial cells further authenticated the above results as LBA-coated Zn-MOFs-treated cells underwent complete distortion compared with non-coated AMX loaded Zn-MOFs. Based on the results of the study, it can be suggested that LBA-coated Zn-MOFs may be an effective alternate candidate to provide new perspective for the treatment of H. pylori infections.

2.
RSC Adv ; 10(2): 1021-1041, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35494463

RESUMO

The current study is aimed at synthesizing and characterizing magnetic cobalt-iron oxide nanoparticles (CoFeNPs) functionalized with two different amino reagents, hydrazine and dodecylamine, resulting in CoFeNPs1 and CoFeNPs2, respectively. Both types of cobalt-ferrite nanoparticles were investigated for the removal of six different negatively charged azoic dyes (Amaranth, Acid Orange 7, Naphthol Blue Black, Reactive Orange 16, Acid Orange 52 and Reactive Red-P2B) from water, and their removal efficiency was compared as a function of different factors such as time, type of anchored amine, size of CoFeNPs and structure of the dye. CoFeNPs were successfully characterized by FT-IR spectra, AFM, SEM-EDS, surface charge (ζ-potential) and thermal analysis. CoFeNPs1 revealed 44.5-82.1% dye removal at equilibrium (attained within 28-115 min) with an adsorptive capacity (q e) of 5.4-13.5 mg g-1 observed under unoptimized conditions (temp. 30 °C, adsorbent dose 0.67 g L-1, pH 6, dye concentration 20 µmol L-1). Use of CoFeNPs2 significantly enhanced the removal of each dye (percent dye removal 68.0-98.9%, q e 6.6-23.5 mg g-1) compared to CoFeNPs1 under similar conditions. From a comparative structural study, a larger size, more complex structure, hydrophobic character and greater number of phenyl SO3 - groups among the tested dyes facilitated their removal by CoFeNPs2, while all of these structural factors were negatively related to dye removal by CoFeNPs1. CoFeNPs2 showed some dye aggregation along with adsorption, while in the case of CoFeNPs1, only adsorption was observed as confirmed by FT-IR and UV-visible spectral studies. Dye removal data in all cases was in best compliance with pseudo-second order kinetics in comparison to pseudo-first order or the Elovich model, where film diffusion was a dominant phenomenon compared to intra-particle diffusion. Adsorption isotherms, thermodynamics and reusability of the CoFeNPs were studied selecting Reactive Orange 16. Adsorption equilibrium was best fitted to the Langmuir isotherm. ΔG° and ΔH° indicated spontaneous and exothermic adsorption. Amine-functionalized CoFeNPs are recommended as potential cost-effective adsorbents with excellent reusability that could be applied efficiently for rapid and selective dye removal from textile effluents considering the size, structure, charge and number of S atoms in the target azo dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA