Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(15): 156503, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683001

RESUMO

The "symmetric mass generation" (SMG) quantum phase transition discovered in recent years has attracted great interest from both condensed matter and high energy theory communities. Here, interacting Dirac fermions acquire a gap without condensing any fermion bilinear mass term or any concomitant spontaneous symmetry breaking. It is hence beyond the conventional Gross-Neveu-Yukawa-Higgs paradigm. One important question we address in this Letter is whether the SMG transition corresponds to a true unitary conformal field theory. We employ the sharp diagnosis including the scaling of disorder operator and Rényi entanglement entropy in large-scale lattice model quantum Monte Carlo simulations. Our results strongly suggest that the SMG transition is indeed an unconventional quantum phase transition and it should correspond to a true (2+1)d unitary conformal field theory.

2.
Phys Rev Lett ; 130(26): 266501, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450825

RESUMO

The fermion disorder operator has been shown to reveal the entanglement information in 1D Luttinger liquids and 2D free and interacting Fermi and non-Fermi liquids emerging at quantum critical points (QCPs) [W. Jiang et al., arXiv:2209.07103]. Here we study, by means of large-scale quantum Monte Carlo simulation, the scaling behavior of the disorder operator in correlated Dirac systems. We first demonstrate the logarithmic scaling behavior of the disorder operator at the Gross-Neveu (GN) chiral Ising and Heisenberg QCPs, where consistent conformal field theory (CFT) content of the GN-QCP in its coefficient is found. Then we study a 2D monopole-free deconfined quantum critical point (DQCP) realized between a quantum-spin Hall insulator and a superconductor. Our data point to negative values of the logarithmic coefficients such that the DQCP does not correspond to a unitary CFT. Density matrix renormalization group calculations of the disorder operator on a 1D DQCP model also detect emergent continuous symmetries.


Assuntos
Simulação por Computador , Método de Monte Carlo
3.
Phys Rev Lett ; 129(5): 056402, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960576

RESUMO

We consider an S=1/2 antiferromagnetic quantum Heisenberg chain where each site is coupled to an independent bosonic bath with ohmic dissipation. The coupling to the bath preserves the global SO(3) spin symmetry. Using large-scale, approximation-free quantum Monte Carlo simulations, we show that any finite coupling to the bath suffices to stabilize long-range antiferromagnetic order. This is in stark contrast to the isolated Heisenberg chain where spontaneous breaking of the SO(3) symmetry is forbidden by the Mermin-Wagner theorem. A linear spin-wave theory analysis confirms that the memory of the bath and the concomitant retarded interaction stabilize the order. For the Heisenberg chain, the ohmic bath is a marginal perturbation so that exponentially large system sizes are required to observe long-range order at small couplings. Below this length scale, our numerics is dominated by a crossover regime where spin correlations show different power-law behaviors in space and time. We discuss the experimental relevance of this crossover phenomena.

4.
Phys Rev Lett ; 128(8): 087201, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275685

RESUMO

Motivated by the physics of spin-orbital liquids, we study a model of interacting Dirac fermions on a bilayer honeycomb lattice at half filling, featuring an explicit global SO(3)×U(1) symmetry. Using large-scale auxiliary-field quantum Monte Carlo (QMC) simulations, we locate two zero-temperature phase transitions as function of increasing interaction strength. First, we observe a continuous transition from the weakly interacting semimetal to a different semimetallic phase in which the SO(3) symmetry is spontaneously broken and where two out of three Dirac cones acquire a mass gap. The associated quantum critical point can be understood in terms of a Gross-Neveu-SO(3) theory. Second, we subsequently observe a transition toward an insulating phase in which the SO(3) symmetry is restored and the U(1) symmetry is spontaneously broken. While strongly first order at the mean-field level, the QMC data are consistent with a direct and continuous transition. It is thus a candidate for a new type of deconfined quantum critical point that features gapless fermionic degrees of freedom.

5.
Phys Rev Lett ; 128(15): 157203, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499903

RESUMO

We investigate nematic quantum phase transitions in two different Dirac fermion models. The models feature twofold and fourfold, respectively, lattice rotational symmetries that are spontaneously broken in the ordered phase. Using negative-sign-free quantum Monte Carlo simulations and an ε-expansion renormalization group analysis, we show that both models exhibit continuous phase transitions. In contrast to generic Gross-Neveu dynamical mass generation, the quantum critical regime is characterized by large velocity anisotropies, with fixed-point values being approached very slowly. Both experimental and numerical investigations will not be representative of the infrared fixed point, but of a quasiuniversal regime where the drift of the exponents tracks the velocity anisotropy.

6.
Proc Natl Acad Sci U S A ; 116(52): 26431-26434, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818954

RESUMO

Recent experimental [I. Jo et al., Phys. Rev. Lett. 119, 016402 (2017)] and numerical [M. Ippoliti, S. D. Geraedts, R. N. Bhatt, Phys. Rev. B 95, 201104 (2017)] evidence suggests an intriguing universal relationship between the Fermi surface anisotropy of the noninteracting parent 2-dimensional (2D) electron gas and the strongly correlated composite Fermi liquid formed in a strong magnetic field close to half-filling. Inspired by these observations, we explore more generally the question of anisotropy renormalization in interacting 2D Fermi systems. Using a recently developed [H. -K. Tang et al., Science 361, 570 (2018)] nonperturbative and numerically exact projective quantum Monte Carlo simulation as well as other numerical and analytic techniques, only for Dirac fermions with long-range Coulomb interactions do we find a universal square-root decrease of the Fermi-surface anisotropy. For the [Formula: see text] composite Fermi liquid, this result is surprising since a Dirac fermion ground state was only recently proposed as an alternative to the usual Halperin-Lee-Read state. Our proposed universality can be tested in several anisotropic Dirac materials including graphene, topological insulators, organic conductors, and magic-angle twisted bilayer graphene.

7.
Phys Rev Lett ; 126(4): 045701, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576684

RESUMO

We use the half-filled zeroth Landau level in graphene as a regularization scheme to study the physics of the SO(5) nonlinear sigma model subject to a Wess-Zumino-Witten topological term in 2+1 dimensions. As shown by Ippoliti et al. [Phys. Rev. B 98, 235108 (2019)PRBMDO2469-995010.1103/PhysRevB.98.235108], this approach allows for negative sign free auxiliary field quantum Monte Carlo simulations. The model has a single free parameter U_{0} that monitors the stiffness. Within the parameter range accessible to negative sign free simulations, we observe an ordered phase in the large U_{0} or stiff limit. Remarkably, upon reducing U_{0} the magnetization drops substantially, and the correlation length exceeds our biggest system sizes, accommodating 100 flux quanta. The implications of our results for deconfined quantum phase transitions between valence bond solids and antiferromagnets are discussed.

8.
Phys Rev Lett ; 126(20): 205701, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110204

RESUMO

A quantum spin Hall insulating state that arises from spontaneous symmetry breaking has remarkable properties: skyrmion textures of the SO(3) order parameter carry charge 2e. Doping this state of matter opens a new route to superconductivity via the condensation of skyrmions. We define a model amenable to large-scale negative sign free quantum Monte Carlo simulations that allows us to study this transition. Our results support a direct and continuous doping-induced transition between the quantum spin Hall insulator and an s-wave superconductor. We can resolve dopings away from half-filling down to δ=0.0017. Such routes to superconductivity have been put forward in the realm of twisted bilayer graphene.

9.
Proc Natl Acad Sci U S A ; 115(30): E6987-E6995, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987049

RESUMO

We study a model of fermions on the square lattice at half-filling coupled to an Ising gauge theory that was recently shown in Monte Carlo simulations to exhibit [Formula: see text] topological order and massless Dirac fermion excitations. On tuning parameters, a confining phase with broken symmetry (an antiferromagnet in one choice of Hamiltonian) was also established, and the transition between these phases was found to be continuous, with coincident onset of symmetry breaking and confinement. While the confinement transition in pure gauge theories is well-understood in terms of condensing magnetic flux excitations, the same transition in the presence of gapless fermions is a challenging problem owing to the statistical interactions between fermions and the condensing flux excitations. The conventional scenario then proceeds via a two-step transition, involving a symmetry-breaking transition leading to gapped fermions followed by confinement. In contrast, here, using quantum Monte Carlo simulations, we provide further evidence for a direct, continuous transition and also find numerical evidence for an enlarged [Formula: see text] symmetry rotating between antiferromagnetism and valence bond solid orders proximate to criticality. Guided by our numerical finding, we develop a field theory description of the direct transition involving an emergent nonabelian [[Formula: see text]] gauge theory and a matrix Higgs field. We contrast our results with the conventional Gross-Neveu-Yukawa transition.

10.
Phys Rev Lett ; 125(20): 206602, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258629

RESUMO

We consider a spin-1/2 Heisenberg chain coupled via a Kondo interaction to two-dimensional Dirac fermions. The Kondo interaction is irrelevant at the decoupled fixed point, leading to the existence of a Kondo-breakdown phase and a Kondo-breakdown critical point separating such a phase from a heavy Fermi liquid. We reach this conclusion on the basis of a renormalization group analysis, large-N calculations as well as extensive auxiliary-field quantum Monte Carlo simulations. We extract quantities such as the zero-bias tunneling conductance which will be relevant to future experiments involving adatoms on semimetals such as graphene.

11.
Phys Rev Lett ; 122(9): 097203, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932556

RESUMO

How many magnetic moments periodically arranged on a metallic surface are needed to generate a coherent Kondo lattice behavior? We investigate this fundamental issue within the particle-hole symmetric Kondo lattice model using quantum Monte Carlo simulations. Extra magnetic atoms forming closed shells around the initial impurity induce a fast splitting of the Kondo resonance at the inner shells, which signals the formation of composite heavy-fermion bands. The onset of the hybridization gap matches well the enhancement of antiferromagnetic spin correlations in the plane perpendicular to the applied magnetic field, a genuine feature of the coherent Kondo lattice. In contrast, the outermost shell remains dominated by a local Kondo physics with spectral features resembling the single-impurity behavior.

12.
Phys Rev Lett ; 123(17): 176601, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702259

RESUMO

Motivated by recent STM experiments, we explore the magnetic field induced Kondo effect that takes place at symmetry protected level crossings in finite Co adatom chains. We argue that the effective two-level system realized at a level crossing acts as an extended impurity coupled to the conduction electrons of the substrate by a distribution of Kondo couplings at the sites of the chain. Using auxiliary-field quantum Monte Carlo simulations, which quantitatively reproduce the field dependence of the zero-bias signal, we show that a proper Kondo resonance is present at the sites where the effective Kondo coupling dominates. Our modeling and numerical simulations provide a theoretical basis for the interpretation of the STM spectrum in terms of level crossings of the Co adatom chains.

13.
Phys Rev Lett ; 121(8): 086601, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192610

RESUMO

Quantum Monte Carlo simulations reveal an exotic metallic phase with a single-particle gap but gapless spin and charge excitations and a nonsaturating resistivity in a two-dimensional SU(2) Falicov-Kimball model. An exact duality between this model and an unconstrained slave-spin theory leads to a classification of the phase as a fractionalized or orthogonal metal whose low-energy excitations have different quantum numbers than the original electrons. Whereas the fractionalized metal corresponds to the regime of disordered slave spins, the regime of ordered slave spins is a Fermi liquid. At a critical temperature, an Ising phase transition to a spontaneously generated constrained slave-spin theory of the Hubbard model is observed.

14.
Phys Rev Lett ; 121(20): 200602, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500261

RESUMO

Recent numerical advances in the field of strongly correlated electron systems allow the calculation of the entanglement spectrum and entropies for interacting fermionic systems. An explicit determination of the entanglement (modular) Hamiltonian has proven to be a considerably more difficult problem, and only a few results are available. We introduce a technique to directly determine the entanglement Hamiltonian of interacting fermionic models by means of auxiliary field quantum Monte Carlo simulations. We implement our method on the one-dimensional Hubbard chain partitioned into two segments and on the Hubbard two-leg ladder partitioned into two chains. In both cases, we study the evolution of the entanglement Hamiltonian as a function of the physical temperature.

15.
Phys Rev Lett ; 120(10): 107201, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570313

RESUMO

The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

16.
Phys Rev Lett ; 119(19): 197203, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219508

RESUMO

We consider a model of Dirac fermions in 2+1 dimensions with dynamically generated, anticommuting SO(3) Néel and Z_{2} Kekulé mass terms that permits sign-free quantum Monte Carlo simulations. The phase diagram is obtained from finite-size scaling and includes a direct and continuous transition between the Néel and Kekulé phases. The fermions remain gapped across the transition, and our data support an emergent SO(4) symmetry unifying the two order parameters. While the bare symmetries of our model do not allow for spinon-carrying Z_{3} vortices in the Kekulé mass, the emergent SO(4) invariance permits an interpretation of the transition in terms of deconfined quantum criticality. The phase diagram also features a tricritical point at which the Néel, Kekulé, and semimetallic phases meet. The present sign-free approach can be generalized to a variety of other mass terms and thereby provides a new framework to study exotic critical phenomena.

17.
Phys Rev Lett ; 119(9): 097401, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28949554

RESUMO

The directed-loop quantum Monte Carlo method is generalized to the case of retarded interactions. Using the path integral, fermion-boson or spin-boson models are mapped to actions with retarded interactions by analytically integrating out the bosons. This yields an exact algorithm that combines the highly efficient loop updates available in the stochastic series expansion representation with the advantages of avoiding a direct sampling of the bosons. The application to electron-phonon models reveals that the method overcomes the previously detrimental issues of long autocorrelation times and exponentially decreasing acceptance rates. For example, the resulting dramatic speedup allows us to investigate the Peierls quantum phase transition on chains of up to 1282 sites.

18.
Phys Rev Lett ; 116(8): 086403, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26967431

RESUMO

We present evidence for Mott quantum criticality in an anisotropic two-dimensional system of coupled Hubbard chains at half-filling. In this scenario emerging from variational cluster approximation and cluster dynamical mean-field theory, the interchain hopping t_{⊥} acts as a control parameter driving the second-order critical end point T_{c} of the metal-insulator transition down to zero at t_{⊥}^{c}/t≃0.2. Below t_{⊥}^{c}, the volume of the hole and electron Fermi pockets of a compensated metal vanishes continuously at the Mott transition. Above t_{⊥}^{c}, the volume reduction of the pockets is cut off by a first-order transition. We discuss the relevance of our findings to a putative quantum critical point in layered organic conductors, whose location remains elusive so far.

19.
Phys Rev Lett ; 111(6): 066401, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971594

RESUMO

We study the quantum phases of fermions with an explicit SU(N)-symmetric, Heisenberg-like nearest-neighbor flavor exchange interaction on the honeycomb lattice at half filling. Employing projective (zero temperature) quantum Monte Carlo simulations for even values of N, we explore the evolution from a weak-coupling semimetal into the strong-coupling, insulating regime. Furthermore, we compare our numerical results to a saddle-point approximation in the large-N limit. From the large-N regime down to the SU(6) case, the insulating state is found to be a columnar valence bond crystal, with a direct transition to the semimetal at weak, finite coupling, in agreement with the mean-field result in the large-N limit. At SU(4) however, the insulator exhibits a subtly different valence bond crystal structure, stabilized by resonating valence bond plaquettes. In the SU(2) limit, our results support a direct transition between the semimetal and an antiferromagnetic insulator.

20.
Phys Rev Lett ; 109(12): 126404, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005966

RESUMO

We study the Mott transition in a frustrated Hubbard model with next-nearest neighbor hopping at half-filling. The interplay between interaction, dimensionality, and geometric frustration closes the one-dimensional Mott gap and gives rise to a metallic phase with Fermi surface pockets. We argue that they emerge as a consequence of remnant one-dimensional umklapp scattering at the momenta with vanishing interchain hopping matrix elements. In this pseudogap phase, enhanced d-wave pairing correlations are driven by antiferromagnetic fluctuations. Within the adopted cluster dynamical mean-field theory on the 8 × 2 cluster and down to our lowest temperatures, the transition from one to two dimensions is continuous.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA