Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 119, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281016

RESUMO

BACKGROUND: Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS: As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS: The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".


Assuntos
Rotíferos , Animais , Rotíferos/genética , Perfilação da Expressão Gênica , Transcriptoma , Proteínas/metabolismo , Sementes , Dormência de Plantas , Germinação/genética
2.
J Biomed Sci ; 31(1): 27, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419051

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) are pivotal players in cellular processes, and their unique cell-type specific expression patterns render them attractive biomarkers and therapeutic targets. Yet, the functional roles of most lncRNAs remain enigmatic. To address the need to identify new druggable lncRNAs, we developed a comprehensive approach integrating transcription factor binding data with other genetic features to generate a machine learning model, which we have called INFLAMeR (Identifying Novel Functional LncRNAs with Advanced Machine Learning Resources). METHODS: INFLAMeR was trained on high-throughput CRISPR interference (CRISPRi) screens across seven cell lines, and the algorithm was based on 71 genetic features. To validate the predictions, we selected candidate lncRNAs in the human K562 leukemia cell line and determined the impact of their knockdown (KD) on cell proliferation and chemotherapeutic drug response. We further performed transcriptomic analysis for candidate genes. Based on these findings, we assessed the lncRNA small nucleolar RNA host gene 6 (SNHG6) for its role in myeloid differentiation. Finally, we established a mouse K562 leukemia xenograft model to determine whether SNHG6 KD attenuates tumor growth in vivo. RESULTS: The INFLAMeR model successfully reconstituted CRISPRi screening data and predicted functional lncRNAs that were previously overlooked. Intensive cell-based and transcriptomic validation of nearly fifty genes in K562 revealed cell type-specific functionality for 85% of the predicted lncRNAs. In this respect, our cell-based and transcriptomic analyses predicted a role for SNHG6 in hematopoiesis and leukemia. Consistent with its predicted role in hematopoietic differentiation, SNHG6 transcription is regulated by hematopoiesis-associated transcription factors. SNHG6 KD reduced the proliferation of leukemia cells and sensitized them to differentiation. Treatment of K562 leukemic cells with hemin and PMA, respectively, demonstrated that SNHG6 inhibits red blood cell differentiation but strongly promotes megakaryocyte differentiation. Using a xenograft mouse model, we demonstrate that SNHG6 KD attenuated tumor growth in vivo. CONCLUSIONS: Our approach not only improved the identification and characterization of functional lncRNAs through genomic approaches in a cell type-specific manner, but also identified new lncRNAs with roles in hematopoiesis and leukemia. Such approaches can be readily applied to identify novel targets for precision medicine.


Assuntos
Leucemia , RNA Longo não Codificante , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Genômica , Leucemia/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Drug Resist Updat ; 67: 100931, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739808

RESUMO

Corroles provide a remarkable opportunity for the development of cancer theranostic agents among other porphyrinoids. While most transition metal corrole complexes are only therapeutic, post-transition metallocorroles also find their applications in bioimaging. Moreover, corroles exhibit excellent photo-physicochemical properties, which can be harnessed for antitumor and antimicrobial interventions. Nevertheless, these intriguing, yet distinct properties of corroles, have not attained sufficient momentum in cancer research. The current review provides a comprehensive summary of various cancer-relevant features of corroles ranging from their structural and photophysical properties, chelation, protein/corrole interactions, to DNA intercalation. Another aspect of the paper deals with the studies of corroles conducted in vitro and in vivo with an emphasis on medical imaging (optical and magnetic resonance), photo/sonodynamic therapies, and photodynamic inactivation. Special attention is also given to a most recent finding that shows the development of pH-responsive phosphorus corrole as a potent antitumor drug for organelle selective antitumor cytotoxicity in preclinical studies. Another biomedical application of corroles is also highlighted, signifying the application of water-soluble and completely lipophilic corroles in the photodynamic inactivation of microorganisms. We strongly believe that future studies will offer a greater possibility of utilizing advanced corroles for selective tumor targeting and antitumor cytotoxicity. In the line with future developments, an ideal pipeline is envisioned on grounds of cancer targeting nanoparticle systems upon decoration with tumor-specific ligands. Hence, we envision that a bright future lies ahead of corrole anticancer research and therapeutics.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Porfirinas , Humanos , Porfirinas/farmacologia , Porfirinas/química , Porfirinas/uso terapêutico , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
BMC Biol ; 21(1): 13, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721160

RESUMO

BACKGROUND: Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS: Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS: Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.


Assuntos
Quadruplex G , Neoplasias , Humanos , Ácido Fólico , Regiões 3' não Traduzidas , Actinas
5.
Clin Microbiol Rev ; 35(3): e0001422, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35862736

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps evolving and mutating into newer variants over time, which gain higher transmissibility, disease severity, and spread in communities at a faster rate, resulting in multiple waves of surge in Coronavirus Disease 2019 (COVID-19) cases. A highly mutated and transmissible SARS-CoV-2 Omicron variant has recently emerged, driving the extremely high peak of infections in almost all continents at an unprecedented speed and scale. The Omicron variant evades the protection rendered by vaccine-induced antibodies and natural infection, as well as overpowers the antibody-based immunotherapies, raising the concerns of current effectiveness of available vaccines and monoclonal antibody-based therapies. This review outlines the most recent advancements in studying the virology and biology of the Omicron variant, highlighting its increased resistance to current antibody-based therapeutics and its immune escape against vaccines. However, the Omicron variant is highly sensitive to viral fusion inhibitors targeting the HR1 motif in the spike protein, enzyme inhibitors, involving the endosomal fusion pathway, and ACE2-based entry inhibitors. Omicron variant-associated infectivity and entry mechanisms of Omicron variant are essentially distinct from previous characterized variants. Innate sensing and immune evasion of SARS-CoV-2 and T cell immunity to the virus provide new perspectives of vaccine and drug development. These findings are important for understanding SARS-CoV-2 viral biology and advances in developing vaccines, antibody-based therapies, and more effective strategies to mitigate the transmission of the Omicron variant or the next SARS-CoV-2 variant of concern.


Assuntos
Anticorpos Monoclonais , Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Anticorpos Monoclonais/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/uso terapêutico , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus/efeitos dos fármacos
6.
Drug Resist Updat ; 63: 100851, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35810716

RESUMO

Breast cancer is one of the most prevalent cancers in women and a leading cause of mortality. As per the GLOBCAN report of 2021, breast cancer has surpassed lung cancer which until recently was the most commonly diagnosed cancer. Despite significant efforts to improve early detection and therapeutic efficacy of breast cancer, the frequent emergence of drug resistance remains the predominant basis for the poor prognosis of cancer patients harboring various malignancies. Long non-coding RNA (lncRNAs) are known to affect a variety of components of genome function, including epigenetics, gene transcription, splicing, translation, as well as many central biological processes like cell cycle progression, cell differentiation, development, and pluripotency. LncRNAs are dysregulated in various malignancies and interact with a multitude of RNAs and proteins to impact drug resistance. LncRNAs regulate chemoresistance in cancer by employing an assortment of molecular mechanisms including multidrug efflux, suppression of apoptosis, DNA damage response, epigenetic alterations, as well as functioning as competitive endogenous RNA. When combined with other regulatory mechanisms, these pathways form a complex orchestration of signaling that ultimately lead to chemoresistance. The current review delves into the role of lncRNAs in inducing drug resistance to conventional therapeutic anti-cancer drugs used for the treatment of breast cancer. We propose that lncRNAs that provoke drug resistance could be used to develop new targeted and tailored therapeutics providing a novel approach to introduce promising personalized treatment modalities to overcome chemoresistance in breast cancer patients. Hence, lncRNAs that drive anticancer drug resistance can be potentially explored as biomarkers of disease prognosis and may provide unique opportunities to circumvent chemoresistance in breast cancer patients.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Pulmonares , RNA Longo não Codificante , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Drug Resist Updat ; 61: 100821, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35219075

RESUMO

Despite the rapid advancement in the introduction of new drugs for cancer therapy, the frequent emergence of drug resistance leads to disease progression or tumor recurrence resulting in dismal prognosis. Given that genetic mutations are thought to be important drivers of anti-cancer drug resistance, it is of paramount importance to pin-point mutant genes that mediate drug resistance and elucidate the underlying molecular mechanisms in order to develop novel modalities to surmount chemoresistance and achieve more efficacious and durable cancer therapies. Cumulative evidence suggests that epigenetic alterations, especially those mediated by epigenetic enzymes with high mutation rates in cancer patients, can be a crucial factor in the development of chemoresistance. Mutant epigenetic enzymes have altered enzymatic activity which may directly or indirectly affect the level of histone modifications. This can change chromatin structure and function hence altering the expression of target genes and eventually lead to chemoresistance. In the current review, we summarize epigenetic enzyme mutations and the consequent mechanisms of drug resistance in pre-clinical drug-resistance models and relapsed cancer patient specimens. We also introduce previously unreported mutation sites in the DOT1 domain of DOT1L, which are related to lung cancer drug resistance. It is worth noting that mutations occur not only in domains with enzymatic activity but also in non-catalytic regions. Each protein domain is an evolutionarily conserved region with independent functional properties. This may provide a rationale for the potential development of small molecule inhibitors which target various functional domains of epigenetic enzymes. Finally, based on the multitude of mechanisms of drug resistance, we propose several therapeutic strategies to reverse or overcome drug-resistance phenotypes, with the aim to provide cancer patients with novel efficacious combination therapeutic regimens and strategies to improve patient prognosis.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia
8.
Drug Resist Updat ; 61: 100822, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35257981

RESUMO

Cancer cell metabolism including aerobic glycolysis, amino acid and fatty acid metabolism, has been extensively studied. Metabolic reprogramming is a major hallmark of cancer, which promotes cancer cell proliferation, progression and metastasis, as well as provokes resistance to chemotherapeutic drugs. Several signal transduction pathways, such as BCR, MEK/ERK, Notch, NF-κB and PI3K/AKT/mTOR, regulate tumor metabolism, hence promoting tumor cell growth, proliferation and progression. Therefore, targeting metabolic enzymes, metabolites or their signal transduction pathways may constitute a promising therapeutic strategy to enhance cancer treatment efficacy. Diffuse large B-cell lymphoma (DLBCL) is the most aggressive form of non-Hodgkin lymphoma (NHL), and one-third of DLBCL patients suffer from relapsed/refractory disease after chemotherapy. The mechanisms underlying drug resistance are complex, including target gene mutations, metabolic reprogramming, aberrant signal transduction pathways, enhanced drug efflux via overexpression of multidrug efflux transporters like P-glycoprotein, upregulation of anti-apoptotic proteins, drug sequestration and enhanced DND repair. This review delineates the distinct metabolic reprogramming patterns and the association between metabolism and anticancer drug resistance in DLBCL as well as the emerging strategies to surmount chemoresistance in DLBCL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Linfoma Difuso de Grandes Células B , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Transdução de Sinais/genética
9.
Drug Resist Updat ; 62: 100833, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429792

RESUMO

Drug resistance remains a major hurdle to successful cancer treatment, being accountable for approximately 90% of cancer-related deaths. In the past years, increasing attention has been given to the role of extracellular vesicles (EVs) in the horizontal transfer of drug resistance in cancer. Indeed, many studies have described the dissemination of therapy resistance traits mediated by EVs, which may be transferred from drug resistant tumor cells to their drug sensitive counterparts. Importantly, different key players of drug resistance have been identified in the cargo of those EVs, such as drug efflux pumps, oncoproteins, antiapoptotic proteins, or microRNAs, among others. Interestingly, the EVs-mediated crosstalk between cells from the tumor microenvironment (TME) and tumor cells has emerged as another important mechanism that leads to cancer cells drug resistance. Recently, the cargo of the TME-derived EVs responsible for the transfer of drug resistance traits has also become a focus of attention. In addition, the possible mechanisms involved in drug sequestration by EVs, likely to contribute to cancer drug resistance, are also described and discussed herein. Despite the latest scientific advances in the field of EVs, this is still a challenging area of research, particularly in the clinical setting. Therefore, further investigation is needed to assess the relevance of EVs to the failure of cancer patients to drug treatment, to identify biomarkers of drug resistance in the EV's cargo, and to develop effective therapeutic strategies to surmount drug resistance. This up-to-date review summarizes relevant literature on the role of EVs in the transfer of drug resistance competences to cancer cells, and the relevance of tumor cells and of TME cells in this process. Finally, this knowledge is integrated with a discussion of possible future clinical applications of EVs as biomarkers of drug resistance.


Assuntos
Vesículas Extracelulares , Neoplasias , Biomarcadores/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
10.
Drug Resist Updat ; 64: 100864, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36115181

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has one of the highest incidence/death ratios among all neoplasms due to its late diagnosis and dominant chemoresistance. Most PDAC patients present with an advanced disease characterized by a multifactorial, inherent and acquired resistance to current anticancer treatments. This remarkable chemoresistance has been ascribed to several PDAC features including the genetic landscape, metabolic alterations, and a heterogeneous tumor microenvironment that is characterized by dense fibrosis, and a cellular contexture including functionally distinct subclasses of cancer-associated fibroblasts, immune suppressive cells, but also a number of bacteria, shaping a specific tumor microbiome microenvironment. Thus, recent studies prompted the emergence of a new research avenue, by describing the role of the microbiome in gemcitabine resistance, while next-generation-sequencing analyses identified a specific microbiome in different tumors, including PDAC. Functionally, the contribution of these microbes to PDAC chemoresistance is only beginning to be explored. Here we provide an overview of the studies demonstrating that bacteria have the capacity to metabolically transform and hence inactivate anticancer drugs, as exemplified by the inhibition of the efficacy of 10 out of 30 chemotherapeutics by Escherichia coli. Moreover, a number of bacteria modulate specific oncogenic pathways, such as Fusobacterium nucleatum, affecting autophagy and apoptosis induction by 5-fluorouracil and oxaliplatin. We hypothesize that improved understanding of how chemoresistance is driven by bacteria could enhance the efficacy of current treatments, and discuss the potential of microbiome modulation and targeted therapeutic approaches as well as the need for more reliable models and biomarkers to translate the findings of preclinical/translational research to the clinical setting, and ultimately overcome PDAC chemoresistance, hence improving clinical outcome.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Microambiente Tumoral , Neoplasias Pancreáticas
11.
Drug Resist Updat ; 64: 100849, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35842983

RESUMO

Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Bevacizumab/uso terapêutico , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Sorafenibe/uso terapêutico
12.
Drug Resist Updat ; 62: 100832, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427871

RESUMO

Small-molecule kinase inhibitors (SMKIs) represent the cornerstone in the treatment of non-small cell lung cancer (NSCLC) patients harboring genetic driver mutations. Because of the introduction of SMKIs in the last decades, treatment outcomes have drastically improved. Their treatment efficacy, the development of drug resistance as well as untoward toxicity, all suffer from large patient variability. This variability can be explained, at least in part, by their oral route of administration, which leads to a large inter- and intra-patient variation in bioavailability based on differences in absorption. Additionally, drug-drug and food-drug interactions are frequently reported. These interactions could modulate SMKI efficacy and/or untoward toxicity. Furthermore, the large patient variability could be explained by the presence of germline variations in target receptor domains, metabolizing enzymes, and drug efflux transporters. Knowledge about these predictor variations is crucial for handling SMKIs in clinical practice, and for selecting the most optimal therapy. In the current review, the literature search included all SMKIs registered for locally-advanced and metastatic NSCLC by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA) until March 24th, 2022. The BIM deletion showed a significantly decreased PFS and OS for East-Asian patients treated with gefitinib, and has the potential to be clinically relevant for other SMKIs as well. Furthermore, we expect most relevance from the ABCG2 34 G>A and CYP1A1 variations during erlotinib and gefitinib treatment. Pre-emptive CYP2D6 testing before starting gefitinib treatment can also be considered to prevent severe drug-related toxicity. These and other germline variations are summarized and discussed, in order to provide clear recommendations for clinical practice.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistência a Medicamentos , Gefitinibe/uso terapêutico , Células Germinativas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento
13.
Int J Mol Sci ; 24(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298590

RESUMO

Macrophages constitute important immune cell targets of the antifolate methotrexate (MTX) in autoimmune diseases, including rheumatoid arthritis. Regulation of folate/MTX metabolism remains poorly understood upon pro-inflammatory (M1-type/GM-CSF-polarized) and anti-inflammatory (M2-type/M-CSF-polarized) macrophages. MTX activity strictly relies on the folylpolyglutamate synthetase (FPGS) dependent intracellular conversion and hence retention to MTX-polyglutamate (MTX-PG) forms. Here, we determined FPGS pre-mRNA splicing, FPGS enzyme activity and MTX-polyglutamylation in human monocyte-derived M1- and M2-macrophages exposed to 50 nmol/L MTX ex vivo. Moreover, RNA-sequencing analysis was used to investigate global splicing profiles and differential gene expression in monocytic and MTX-exposed macrophages. Monocytes displayed six-eight-fold higher ratios of alternatively-spliced/wild type FPGS transcripts than M1- and M2-macrophages. These ratios were inversely associated with a six-ten-fold increase in FPGS activity in M1- and M2-macrophages versus monocytes. Total MTX-PG accumulation was four-fold higher in M1- versus M2-macrophages. Differential splicing after MTX-exposure was particularly apparent in M2-macrophages for histone methylation/modification genes. MTX predominantly induced differential gene expression in M1-macrophages, involving folate metabolic pathway genes, signaling pathways, chemokines/cytokines and energy metabolism. Collectively, macrophage polarization-related differences in folate/MTX metabolism and downstream pathways at the level of pre-mRNA splicing and gene expression may account for variable accumulation of MTX-PGs, hence possibly impacting MTX treatment efficacy.


Assuntos
Metotrexato , Monócitos , Humanos , Metotrexato/farmacologia , Metotrexato/metabolismo , Monócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Processamento Alternativo , Precursores de RNA/metabolismo , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Macrófagos/metabolismo , Expressão Gênica , Peptídeo Sintases/genética
14.
Drug Resist Updat ; 56: 100762, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33857756

RESUMO

Prostate cancer (PC) is the second most common cause of death amongst men in the USA. Therapy of PC has been transformed in the past decade by introducing novel therapeutics, advanced functional imaging and diagnostic approaches, next generation sequencing, as well as improved application of existing therapies in localized PC. Treatment of PC at the different stages of the disease may include surgery, androgen deprivation therapy (ADT), chemotherapy and radiation therapy. However, although ADT has proven efficacious in PC treatment, its effectiveness may be temporary, as these tumors frequently develop molecular mechanisms of therapy resistance, which allow them to survive and proliferate even under conditions of testosterone deprivation, inhibition of androgen receptor signaling, or cytotoxic drug treatment. Importantly, ADT was found to induce key alterations which frequently result in the formation of metastatic tumors displaying a therapy refractory phenotype. Hence, to overcome these serious therapeutic impediments, novel PC cell-targeted therapeutic strategies are being developed. These include diverse platforms enabling specific enhanced antitumor drug uptake and increased intracellular accumulation. Studies have shown that these novel treatment modalities lead to enhanced antitumor activity and diminished systemic toxicity due to the use of selective targeting and decreased drug doses. The underlying mechanism of targeting and internalization is based upon the interaction between a selective ligand, conjugated to a drug-loaded nanoparticle or directly to an anti-cancer drug, and a specific plasma membrane biomarker, uniquely overexpressed on the surface of PC cells. Another targeted therapeutic approach is the delivery of unique anti-oncogenic signaling pathway-based therapeutic drugs, which are selectively cytotoxic to PC cells. The current paper reviews PC targeted modalities reported in the past 6 years, and discusses both the advantages and limitations of the various targeted treatment strategies.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Masculino , Nanopartículas , Estadiamento de Neoplasias , Microambiente Tumoral
15.
Drug Resist Updat ; 54: 100742, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429249

RESUMO

Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias/tratamento farmacológico , Taxoides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Ensaios Clínicos como Assunto , Humanos , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Taxoides/química , Taxoides/farmacocinética
16.
Drug Resist Updat ; 57: 100770, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34175687

RESUMO

The cytotoxic anti-cancer drugs cisplatin, paclitaxel, doxorubicin, 5-fluorouracil (5-FU), as well as targeted drugs including imatinib, erlotinib, and nivolumab, play key roles in clinical cancer treatment. However, the frequent emergence of drug resistance severely comprosises their anti-cancer efficacy. A number of studies indicated that loss of function of tumor suppressor genes (TSGs) is involved in the development of cancer drug resistance, apart from decreased drug influx, increased drug efflux, induction of anti-apoptosis mechanisms, alterations in tumor microenvironment, drug compartmentalization, enhanced DNA repair and drug inactivation. TSGs are involved in the pathogenesis of tumor formation through regulation of DNA damage repair, cell apoptosis, autophagy, proliferation, cell cycle progression, and signal transduction. Our increased understanding of TSGs in the past decades demonstrates that gene mutation is not the only reason that leads to the inactivation of TSGs. Loss of function of TSGs may be based on the ubiquitin-proteasome pathway, epigenetic and transcriptional regualtion, post-translation modifications like phosphorylation as well as cellular translocation of TSGs. As the above processes can constitute"druggable targets", these mechanisms provide novel therapeutic approaches in targeting TSGs. Some small molecule compounds targeting these approaches re-activated TSGs and reversed cancer drug resistance. Along this vein, functional restoration of TSGs is a novel and promising approach to surmount cancer drug resistance. In the current review, we draw a scenario based on the role of loss of function of TSGs in drug resistance, on mechanisms leading to inactivation of TSGs and on pharmacological agents acting on these mechanisms to overcome cancer drug resistance. This review discusses novel therapeutic strategies targeting TSGs and offers possible modalities to conquer cancer drug resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Genes Supressores de Tumor/efeitos dos fármacos , Genes Supressores de Tumor/fisiologia , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Reparo do DNA/fisiologia , Humanos , Transdução de Sinais , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
17.
Drug Resist Updat ; 58: 100777, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34481195

RESUMO

Chemotherapy remains a powerful tool to eliminate malignant cells. However, the efficacy of chemotherapy is compromised by the frequent emergence of intrinsic and acquired multidrug resistance (MDR). These chemoresistance modalities are based on a multiplicity of molecular mechanisms of drug resistance, including : 1) Impaired drug uptake into cancer cells; 2) Increased expression of ATP-binding cassette efflux transporters; 3) Loss of function of pro-apoptotic factors; 4) Enhanced DNA repair capacity; 5) Qualitative or quantitative alterations of specific cellular targets; 6) Alterations that allow cancer cells to tolerate adverse or stressful conditions; 7) Increased biotransformation or metabolism of anticancer drugs to less active or completely inactive metabolites; and 8) Intracellular and intercellular drug sequestration in well-defined organelles away from the cellular target. Hence, one of the major aims of cancer research is to develop novel strategies to overcome cancer drug resistance. Over the last decades, nanomedicine, which focuses on targeted delivery of therapeutic drugs into tumor tissues using nano-sized formulations, has emerged as a promising tool for cancer treatment. Therefore, nanomedicine has been introduced as a reliable approach to improve treatment efficacy and minimize detrimental adverse effects as well as overcome cancer drug resistance. With rationally designed strategies including passively targeted delivery, actively targeted delivery, delivery of multidrug combinations, as well as multimodal combination therapy, nanomedicine paves the way towards efficacious cancer treatment and hold great promise in overcoming cancer drug resistance. Herein, we review the recent progress of nanomaterials used in medicine, including liposomal nanoparticles, polymeric nanoparticles, inorganic nanoparticles and hybrid nanoparticles, to surmount cancer multidrug resistance. Finally, the future perspectives of the application of nanomedicine to reverse cancer drug resistance will be addressed.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
18.
Drug Resist Updat ; 58: 100779, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34461526

RESUMO

Pancreatic cancer is an aggressive malignancy with increasing incidence and poor prognosis due to its late diagnosis and intrinsic chemoresistance. Most pancreatic cancer patients present with locally advanced or metastatic disease characterized by inherent resistance to chemotherapy. These features pose a series of therapeutic challenges and new targets are urgently needed. Glycogen synthase kinase 3 beta (GSK3ß) is a conserved serine/threonine kinase, which regulates key cellular processes including cell proliferation, DNA repair, cell cycle progression, signaling and metabolic pathways. GSK3ß is implicated in non-malignant and malignant diseases including inflammation, neurodegenerative diseases, diabetes and cancer. GSK3ß recently emerged among the key factors involved in the onset and progression of pancreatic cancer, as well as in the acquisition of chemoresistance. Intensive research has been conducted on key oncogenic functions of GSK3ß and its potential as a druggable target; currently developed GSK3ß inhibitors display promising results in preclinical models of distinct tumor types, including pancreatic cancer. Here, we review the latest findings about GSK-3ß biology and its role in the development and progression of pancreatic cancer. Moreover, we discuss therapeutic agents targeting GSK3ß that could be administered as monotherapy or in combination with other drugs to surmount chemoresistance. Several studies are also defining potential gene signatures to identify patients who might benefit from GSK3ß-based therapeutic intervention. This detailed overview emphasizes the urgent need of additional molecular studies on the impact of GSK3ß inhibition as well as structural analysis of novel compounds and omics studies of predictive biomarkers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Pancreáticas , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Oncogenes , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética
19.
Drug Resist Updat ; 55: 100754, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33691261

RESUMO

One of the primary causes of attenuated or loss of efficacy of cancer chemotherapy is the emergence of multidrug resistance (MDR). Numerous studies have been published regarding potential approaches to reverse resistance to taxanes, including paclitaxel (PTX) and docetaxel, which represent one of the most important classes of anticancer drugs. Since 1984, following the FDA approval of paclitaxel for the treatment of advanced ovarian carcinoma, taxanes have been extensively used as drugs that target tumor microtubules. Taxanes, have been shown to affect an array of oncogenic signaling pathways and have potent cytotoxic efficacy. However, the clinical success of these drugs has been restricted by the emergence of cancer cell resistance, primarily caused by the overexpression of MDR efflux transporters or by microtubule alterations. In vitro and in vivo studies indicate that the mechanisms underlying the resistance to PTX and docetaxel are primarily due to alterations in α-tubulin and ß-tubulin. Moreover, resistance to PTX and docetaxel results from: 1) alterations in microtubule-protein interactions, including microtubule-associated protein 4, stathmin, centriole, cilia, spindle-associated protein, and kinesins; 2) alterations in the expression and activity of multidrug efflux transporters of the ABC superfamily including P-glycoprotein (P-gp/ABCB1); 3) overexpression of anti-apoptotic proteins or inhibition of apoptotic proteins and tumor-suppressor proteins, as well as 4) modulation of signal transduction pathways associated with the activity of several cytokines, chemokines and transcription factors. In this review, we discuss the abovementioned molecular mechanisms and their role in mediating cancer chemoresistance to PTX and docetaxel. We provide a detailed analysis of both in vitro and in vivo experimental data and describe the application of these findings to therapeutic practice. The current review also discusses the efficacy of different pharmacological modulations to achieve reversal of PTX resistance. The therapeutic roles of several novel compounds, as well as herbal formulations, are also discussed. Among them, many structural derivatives had efficacy against the MDR phenotype by either suppressing MDR or increasing the cytotoxic efficacy compared to the parental drugs, or both. Natural products functioning as MDR chemosensitizers offer novel treatment strategies in patients with chemoresistant cancers by attenuating MDR and increasing chemotherapy efficacy. We broadly discuss the roles of inhibitors of P-gp and other efflux pumps, in the reversal of PTX and docetaxel resistance in cancer cells and the significance of using a nanomedicine delivery system in this context. Thus, a better understanding of the molecular mechanisms mediating the reversal of drug resistance, combined with drug efficacy and the application of target-based inhibition or specific drug delivery, could signal a new era in modern medicine that would limit the pathological consequences of MDR in cancer patients.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Taxoides/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Hidrocarbonetos Aromáticos com Pontes , Linhagem Celular Tumoral , Portadores de Fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genes Supressores de Tumor/efeitos dos fármacos , Genes Supressores de Tumor/fisiologia , Humanos , Microtúbulos/fisiologia , Nanopartículas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tubulina (Proteína)/efeitos dos fármacos
20.
Drug Resist Updat ; 54: 100743, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513557

RESUMO

ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Transporte Biológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA