RESUMO
The employment of type-I pyrethroids for airplane disinfection in recent years underlines the necessity to develop sensing schemes for the rapid detection of these pesticides directly at the point-of-use. Antibody-gated indicator-releasing materials were thus developed and implemented with test strips for lateral-flow assay-based analysis employing a smartphone for readout. Besides a proper matching of pore sizes and gating macromolecules, the functionalization of both the material's outer surface as well as the strips with PEG chains enhanced system performance. This simple assay allowed for the detection of permethrin as a target molecule at concentrations down to the lower ppb level in less than 5 minutes.
Assuntos
Técnicas Biossensoriais/métodos , Piretrinas/análise , Anticorpos/química , Polietilenoglicóis/química , Piretrinas/química , Fatores de TempoRESUMO
A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (λex = 370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 °C. All components are controlled using a smartphone battery powered Arduino microcontroller and a customised Android application that allows sequential fluorescence imaging and quantification every δt = 4 seconds. The temperature dependence of fluorescence intensity for four emitters (rhodamine B, rhodamine 6G, 5,10,15,20-tetraphenylporphyrin and 6-(1,4,8,11-tetraazacyclotetradecane)2-ethyl-naphthalimide) are characterised. The normalised fluorescence intensity over time of the latter chemosensor dye complex in the presence of Zn2+ is observed to accelerate with an increasing rate constant, k = 1.94 min-1 at T = 15 °C and k = 3.64 min-1 at T = 30 °C, approaching a factor of â¼2 with only a change in temperature of ΔT = 15 °C. Thermally tuning these twist and bend associated rates to optimise sensor approaches and device applications is proposed.
RESUMO
A combined "dual" absorption and fluorescence smartphone spectrometer is demonstrated. The optical sources used in the system are the white flash LED of the smartphone and an orthogonally positioned and interchangeable UV (λex=370 nm) and blue (λex=450 nm) LED. The dispersive element is a low-cost, nano-imprinted diffraction grating coated with Au. Detection over a 300 nm span with 0.42 nm/pixel resolution was carried out with the camera CMOS chip. By integrating the blue and UV excitation sources into the white LED circuitry, the entire system is self-contained within a 3D printed case and powered from the smartphone battery; the design can be scaled to add further excitation sources. Using a customized app, acquisition of absorption and fluorescence spectra are demonstrated using a blue-absorbing and green-emitting pH-sensitive amino-naphthalimide-based fluorescent probe and a UV-absorbing and blue-emitting Zn2+-sensitive fluoro-ionophore.
RESUMO
In a systematic approach we synthesized a new series of fluorescent probes incorporating donor-acceptor (D-A) substituted 1,2,3-triazoles as conjugative π-linkers between the alkali metal ion receptor N-phenylaza-[18]crown-6 and different fluorophoric groups with different electron-acceptor properties (4-naphthalimide, meso-phenyl-BODIPY and 9-anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge-transfer (CT) type probes 1, 2 and 7, the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge-separated states. In the presence of Na(+) and K(+) ICT is interrupted, which resulted in a lighting-up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7, which contains a 9-anthracenyl moiety as the electron-accepting fluorophore, is the only probe which retains light-up features in water and works as a highly K(+)/Na(+)-selective probe under simulated physiological conditions. Virtually decoupled BODIPY-based 6 and photoinduced electron transfer (PET) type probes 3-5, where the 10-substituted anthracen-9-yl fluorophores are connected to the 1,2,3-triazole through a methylene spacer, show strong ion-induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3-triazole fluoroionophores.
RESUMO
Herein, we report the synthesis of two phenylaza-[18]crown-6 lariat ethers with a coumarin fluorophore (1 and 2) and we reveal that compound 1 is an excellent probe for K(+) ions under simulated physiological conditions. The presence of a 2-methoxyethoxy lariat group at the ortho position of the anilino moiety is crucial to the substantially increased stability of compounds 1 and 2 over their lariat-free phenylaza-[18]crown-6 ether analogues. Probe 1 shows a high K(+)/Na(+) selectivity and a 2.5-fold fluorescence enhancement was observed in the presence of 100â mM K(+) ions. A fluorescent membrane sensor, which was prepared by incorporating probe 1 into a hydrogel, showed a fully reversible response, a response time of 150â s, and a signal change of 7.8% per 1â mM K(+) within the range 1-10â mM K(+). The membrane was easily fabricated (only a single sensing layer on a solid polyester support), yet no leaching was observed. Moreover, compound 1 rapidly permeated into cells, was cytocompatible, and was suitable for the fluorescent imaging of K(+) ions on both the extracellular and intracellular levels.
Assuntos
Éteres de Coroa/química , Géis/química , Ionóforos/química , Íons/química , Potássio/química , Fluorescência , Estrutura Molecular , Espectrometria de FluorescênciaRESUMO
In this paper, we describe our synthesis of four key building blocks for the total synthesis of psymberin (1) and its C4 epimer (2). Despite early difficulties in processing material to the advanced intermediate stage, we have been successful in developing high-yielding syntheses for the pyran core, natural side chain, 4-epi side chain, and aryl fragments of the molecule. Our findings from the optimization process are presented herein.
Assuntos
Pironas/síntese química , Cumarínicos , Conformação Molecular , Pironas/química , EstereoisomerismoRESUMO
Fluorescent molecular probes for metal ions have a raft of potential applications in chemistry and biomedicine. We report the synthesis and photophysical characterisation of 1,8-disubstituted-cyclam/naphthalimide conjugates and their zinc complexes. An efficient synthesis of 1,8-bis-(2-azidoethyl)cyclam has been developed and used to prepare 1,8-disubstituted triazolyl-cyclam systems, in which the pendant group is connected to triazole C4. UV/Vis and fluorescence emission spectra, zinc binding experiments, fluorescence quantum yield and lifetime measurements and pH titrations of the resultant bis-naphthalimide ligand elucidate a complex pattern of photophysical behaviour. Important differences arise from the inclusion of two fluorophores in the one probe and from the variation of triazole substitution pattern (dye at C4 vs. N1). Introducing a second fluorophore greatly extends fluorescence lifetimes, whereas the altered substitution pattern at the cyclam amines exerts a major influence on fluorescence output and metal binding. Crystal structures of two key zinc complexes evidence variations in triazole coordination that mirror the solution-phase behaviour of these systems.
RESUMO
We report fluorescence measurements of three quantum dots (QDs) of different sizes functionalised with the same pH responsive naphthalimide dye. QD size strongly influences energy transfer between dye and dot. Using QDs with an emission maximum of 570 nm gives rise to an interesting transfer of energy from dye to dot, while QDs with an emission maximum at 670 nm give unexpected enhancement of the dye emission. Titrations of QDs with the dye provide a means to establish the loading and hence an approximation of the surface dye density, which varies in proportion to QD size. Quenching effects are observed beyond the loading limit, and may indicate non-specific interactions between the excess dye and the nanoparticle. Attachment of the dye to the QD core is achieved by a thiol/disulfide exchange process that has been interrogated with Raman spectroscopy. The stability of these QD-dye conjugates over time and across a physiological pH range has been investigated to provide an assessment of their performance and robustness.
Assuntos
Pontos Quânticos , Concentração de Íons de Hidrogênio , Medições Luminescentes , Estrutura Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
We report a 1,2,3-triazol fluoroionophore for detecting Na(+) that shows in vitro enhancement in the Na(+)-induced fluorescence intensity and decay time. The Na(+)-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na(+) in the range of 1-10 mM by measuring reversible fluorescence decay time changes.
Assuntos
Fluorescência , Sódio/análise , Triazóis/química , Estrutura MolecularRESUMO
Ligands incorporating a tetraazamacrocycle receptor, a 'click'-derived triazole and a 1,8-naphthalimide fluorophore have proven utility as probes for metal ions. Three new cyclam-based molecular probes are reported, in which a piperidinyl group has been introduced at the 4-position of the naphthalimide fluorophore. These compounds have been synthesized using the copper(I)-catalyzed azide-alkyne Huisgen cycloaddition and their photophysical properties studied in detail. The alkylamino group induces the expected red-shift in absorption and emission spectra relative to the simple naphthalimide derivatives and gives rise to extended fluorescence lifetimes in aqueous buffer. The photophysical properties of these systems are shown to be highly solvent-dependent. Screening the fluorescence responses of the new conjugates to a wide variety of metal ions reveals significant and selective fluorescence quenching in the presence of copper(II), yet no fluorescence enhancement with zinc(II) as observed previously for the simple naphthalimide derivatives. Reasons for this different behaviour are proposed. Cytotoxicity testing shows that these new cyclam-triazole-dye conjugates display little or no toxicity against either DLD-1 colon carcinoma cells or MDA-MB-231 breast carcinoma cells, suggesting a potential role for these and related systems in biological sensing applications.
Assuntos
Técnicas Biossensoriais/métodos , Cobre/análise , Corantes Fluorescentes , Compostos Heterocíclicos/química , Piperidinas/química , Linhagem Celular Tumoral , Cobre/metabolismo , Feminino , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , HumanosRESUMO
The new π-conjugated 1,2,3-triazol-1,4-diyl fluoroionophore 1 generated via Cu(I) catalyzed [3 + 2] cycloaddition shows high fluorescence enhancement factors (FEF) in the presence of Na(+) (FEF=58) and K(+) (FEF=27) in MeCN and high selectivity towards K(+) under simulated physiological conditions (160 mM K(+) or Na(+), respectively) with a FEF of 2.5 for K(+).