Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 243(4): 1055-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26794965

RESUMO

MAIN CONCLUSION: Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.


Assuntos
Botrytis/patogenicidade , Eucalyptus/fisiologia , Doenças das Plantas/microbiologia , Streptomyces/fisiologia , Catecol Oxidase/metabolismo , Ácido Clorogênico/metabolismo , Eucalyptus/microbiologia , Ácido Gálico/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Hidroxibenzoatos/metabolismo , Peroxidases/metabolismo , Metabolismo Secundário
2.
Biol Res ; 42(2): 205-15, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19746266

RESUMO

The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO) and peroxidase (POX) were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase in defense mechanisms such as enzyme activity and phenolic compounds. Therefore, resistance or susceptibility in S. tuberosum cv. Agata might depend on leaf age, type of inoculation performed (single or multiple), and the interaction between plant and pathogen.


Assuntos
Pectobacterium carotovorum/fisiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Solanum tuberosum/microbiologia , Xanthomonas axonopodis/fisiologia , Interações Hospedeiro-Parasita , Imunidade Inata/fisiologia , Pectobacterium carotovorum/patogenicidade , Doenças das Plantas/imunologia , Ralstonia solanacearum/patogenicidade , Solanum tuberosum/enzimologia , Solanum tuberosum/imunologia , Xanthomonas axonopodis/patogenicidade
4.
Plant Physiol Biochem ; 118: 479-493, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28756346

RESUMO

Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR.


Assuntos
Pectobacterium carotovorum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Solanum lycopersicum/microbiologia , Streptomyces/crescimento & desenvolvimento , Streptomyces/isolamento & purificação
5.
Biol. Res ; 42(2): 205-215, 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-524891

RESUMO

The natural resistance of plants to disease is based not only on preformed mechanisms, but also on induced mechanisms. The defense mechanisms present in resistant plants may also be found in susceptible ones. This study attempted to analyze the metabolic alterations in plants of the potato Solanum tuberosum L. cv. Agata that were inoculated with the incompatible plant-pathogenic bacteria X. axonopodis and R. solanacearum, and the compatible bacterium E. carotovora. Levels of total phenolic compounds, including the flavonoid group, and the activities of polyphenol oxidase (PPO) and peroxidase (POX) were evaluated. Bacteria compatibility was evaluated by means of infiltration of tubers. The defense response was evaluated in the leaves of the potato plants. Leaves were inoculated depending on their number and location on the stem. Multiple-leaf inoculation was carried out on basal, intermediate, and apical leaves, and single inoculations on intermediate leaves. Leaves inoculated with X. axonopodis and with R. solanacearum showed hypersensitive responses within 24 hours post-inoculation, whereas leaves inoculated with E. carotovora showed disease symptoms. Therefore, the R. solanacearum isolate used in the experiments did not exhibit virulence to this potato cultivar. Regardless of the bacterial treatments, the basal leaves showed higher PPO and POX activities and lower levels of total phenolic compounds and flavonoids, compared to the apical leaves. However, basal and intermediate leaves inoculated with R. solanacearum and X. axonopodis showed increases in total phenolic compounds and flavonoid levels. In general, multiple-leaf inoculation showed the highest levels of total phenolics and flavonoids, whereas the single inoculations resulted in the highest increase in PPO activity. The POX activity showed no significant difference between single- and multiple-leaf inoculations. Plants inoculated with E. carotovora showed no significant increase ...


Assuntos
Pectobacterium carotovorum/fisiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Solanum tuberosum/microbiologia , Xanthomonas axonopodis/fisiologia , Interações Hospedeiro-Parasita , Imunidade Inata/fisiologia , Pectobacterium carotovorum/patogenicidade , Doenças das Plantas/imunologia , Ralstonia solanacearum/patogenicidade , Solanum tuberosum/enzimologia , Solanum tuberosum/imunologia , Xanthomonas axonopodis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA