Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 18(8): 3171-3180, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279974

RESUMO

Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection, biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair mechanisms and represents a promising alternative to current wound healing products.


Assuntos
Anexina A1/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Bandagens , Diabetes Mellitus Experimental/complicações , Proteínas Relacionadas à Folistatina/administração & dosagem , Peptídeos/administração & dosagem , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Ferida Cirúrgica/complicações , Ferida Cirúrgica/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/complicações , Infecção dos Ferimentos/tratamento farmacológico , Células 3T3 , Animais , Materiais Biocompatíveis/administração & dosagem , Biopolímeros/química , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Células HaCaT , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Masculino , Teste de Materiais/métodos , Camundongos , Nanofibras/química , Ratos , Ratos Wistar , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento , Infecção dos Ferimentos/microbiologia
2.
Biochem Biophys Res Commun ; 530(1): 173-180, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32828282

RESUMO

We investigated the impact of human demineralized bone matrix (hDBM) plus adipose-derived stem cells (hADS) plus photobiomodulation (PBM) on a critical-sized femoral defect (CSFD) in ovariectomy induced osteoporosis in rats. There were 6 groups as follows. In group 1 (control, C), only CSFDs were created. Groups 2-6 were implanted with DBM into the CSFD (DBM-CSFD). In group 2 (S), only DBM was transplanted into the CSFD. In group 3 (S + PBM), the DBM-CSFDs were treated with PBM. In group 4, the DBM-CSFDs were treated with alendronate (S + ALN). In group 5, ADSs were seeded into DBM-CSFD (S + ADS). In group 6, ADSs were seeded into DBM-CSFD and the CSFDs were treated with PBM (S + PBM + ADS). At week eight (catabolic phase of bone repair), the S + ALN, S + PBM + ADS, S + PBM, and S + ADS groups all had significantly increased bone strength than the S group (ANOVA, p = 0.000). The S + PBM, S + PBM + ADS, and S + ADS groups had significantly increased Hounsfield unit than the S group (ANOVA, p = 0.000). ALN, ADS, and PBM significantly increased healed bone strength in an experimental model of DBM-treated CSFD in the catabolic phase of bone healing in osteoporotic rats. However, ALN alone and PBM plus ADS were superior to the other protocols.


Assuntos
Matriz Óssea/transplante , Terapia com Luz de Baixa Intensidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoporose/terapia , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fêmur/lesões , Fêmur/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Osteoporose/patologia , Ratos , Ratos Wistar
3.
J Lasers Med Sci ; 12: e41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733764

RESUMO

Introduction: The ability of simultaneous treatment of critical-sized femoral defects (CSFDs) with photobiomodulation (PBM) and demineralized bone matrix (DBM) with or without seeded adipose-derived stem cells (ASCs) to induce bone reconstruction in ovariectomized induced osteoporotic (OVX) rats was investigated. Methods: The OVX rats with CSFD were arbitrarily separated into 6 groups: control, scaffold (S, DBM), S + PBM, S + alendronate (ALN), S + ASCs, and S + PBM + ASCs. Each group was assessed by cone beam computed tomography (CBCT) and histological examinations. Results: In the fourth week, CBCT and histological analyses revealed that the largest volume of new bone formed in the S + PBM and S + PBM + ASC groups. The S + PBM treatment relative to the S and S + ALN treatments remarkably reduced the CSFD (Mann-Whitney test, P = 0.009 and P = 0.01). Furthermore, S + PBM + ASCs treatment compared to the S and S + ALN treatments significantly decreased CSFD (Mann Whitney test, P = 0.01). In the eighth week, CBCT analysis showed that extremely enhanced bone regeneration occurred in the CSFD of the S + PBM group. Moreover, the CSFD in the S + PBM group was substantially smaller than S, S + ALN and S + ASCs groups (Mann Whitney test, P = 0.01, P = 0.02 and P = 0.009). Histological observations showed more new bone formation in the treated CSFD of S + PBM + ASCs and S + PBM groups. Conclusion: The PBM plus DBM with or without ASCs significantly enhanced bone healing in the CSFD in OVX rats compared to control, DBM alone, and ALN plus DBM groups. The PBM plus DBM with or without ASCs significantly decreased the CSFD area compared to either the solo DBM or ALN plus DBM treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA