Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(13): 135004, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23030097

RESUMO

The implosions of initially solid beryllium liners (tubes) have been imaged with penetrating radiography through to stagnation. These novel radiographic data reveal a high degree of azimuthal correlation in the evolving magneto-Rayleigh-Taylor structure at times just prior to (and during) stagnation, providing stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities. To emphasize this point, comparisons to 2D and 3D radiation magnetohydrodynamics simulations are also presented. Both agreement and substantial disagreement have been found, depending on how the liner's initial outer surface finish was modeled. The various models tested, and the physical implications of these models are discussed. These comparisons exemplify the importance of the experimental data obtained.

2.
Phys Rev Lett ; 106(23): 235002, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21770512

RESUMO

High-irradiance short-pulse lasers incident on solid density thin foils provide high-energy, picosecond-duration, and monochromatic K(α) x-ray sources, but with limited conversion efficiency ϵ of laser energy into K(α) x-ray energy. A novel two-stage target concept is proposed that utilizes ultrahigh-contrast laser interactions with primary ultrathin foils in order to efficiently generate and transport in large quantities only the most effective K(α)-producing high-energy electrons into secondary x-ray converter foils. Benchmarked simulations with no free numerical parameters indicate an ϵ enhancement greater than tenfold over conventional single targets may be possible.

3.
Phys Rev Lett ; 105(18): 185001, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231110

RESUMO

The first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (∼100 ns) Z-pinch plasmas are reported. Sinusoidal perturbations on the surface of an initially solid Al tube (liner) with wavelengths of 25-400 µm were used to seed the instability. Radiographs with 15 µm resolution captured the evolution of the outer liner surface. Comparisons with numerical radiation magnetohydrodynamic simulations show remarkably good agreement down to 50 µm wavelengths.

4.
Rev Sci Instrum ; 79(10): 10E914, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044569

RESUMO

When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26 MA Z Accelerator, the terawatt-class, multikilojoule, 526.57 nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151 keV (1s(2)-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1 mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20 ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151 keV two frame technique has recently been used to image imploding wire arrays, using a 7.3 ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181 keV Mn 1s(2)-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1 ns gate time) digital x-ray camera is being developed [G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)] to extend the system to "four-frame" and markedly improve the signal-to-noise ratio. [At present, time-integrating Fuji BAS-TR2025 image plate (scanned with a Fuji BAS-5000 device) forms the time-integrated image-plane detector.].

5.
Rev Sci Instrum ; 79(10): 10E913, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044568

RESUMO

A streaked radiography diagnostic has been proposed as a technique to determine the ablator mass remaining in an inertial confinement fusion ignition capsule at peak velocity. This instrument, the "HXRI-5," has been designed to fit within a National Ignition Facility Diagnostic Instrument Manipulator. The HXRI-5 will be built at Sandia National Laboratories (SNL), and initial testing will be done at the SNL Z-Beamlet Facility. In this paper, we will describe the National Ignition Campaign requirements for this diagnostic, the instrument design, and the planned test experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA