Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 473(7347): 372-5, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21508957

RESUMO

A minority of individuals experiencing traumatic events develop anxiety disorders. The reason for the lack of correspondence between the prevalence of exposure to psychological trauma and the development of anxiety is unknown. Extracellular proteolysis contributes to fear-associated responses by facilitating neuronal plasticity at the neuron-matrix interface. Here we show in mice that the serine protease neuropsin is critical for stress-related plasticity in the amygdala by regulating the dynamics of the EphB2-NMDA-receptor interaction, the expression of Fkbp5 and anxiety-like behaviour. Stress results in neuropsin-dependent cleavage of EphB2 in the amygdala causing dissociation of EphB2 from the NR1 subunit of the NMDA receptor and promoting membrane turnover of EphB2 receptors. Dynamic EphB2-NR1 interaction enhances NMDA receptor current, induces Fkbp5 gene expression and enhances behavioural signatures of anxiety. On stress, neuropsin-deficient mice do not show EphB2 cleavage and its dissociation from NR1 resulting in a static EphB2-NR1 interaction, attenuated induction of the Fkbp5 gene and low anxiety. The behavioural response to stress can be restored by intra-amygdala injection of neuropsin into neuropsin-deficient mice and disrupted by the injection of either anti-EphB2 antibodies or silencing the Fkbp5 gene in the amygdala of wild-type mice. Our findings establish a novel neuronal pathway linking stress-induced proteolysis of EphB2 in the amygdala to anxiety.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Calicreínas/metabolismo , Receptor EphB2/metabolismo , Tonsila do Cerebelo/citologia , Animais , Ansiedade/genética , Transtornos de Ansiedade/etiologia , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/metabolismo , Condutividade Elétrica , Medo , Regulação da Expressão Gênica , Calicreínas/deficiência , Calicreínas/genética , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neurônios/metabolismo , Ligação Proteica , Receptor EphB2/química , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/metabolismo , Proteínas de Ligação a Tacrolimo/genética
2.
Proc Natl Acad Sci U S A ; 108(45): 18436-41, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21969573

RESUMO

Psychological stress causes adaptive changes in the nervous system directed toward maintaining homoeostasis. These biochemical and structural mechanisms regulate animal behavior, and their malfunction may result in various forms of affective disorders. Here we found that the lipocalin-2 (Lcn2) gene, encoding a secreted protein of unknown neuronal function, was up-regulated in mouse hippocampus following psychological stress. Addition of lipocalin-2 to cultured hippocampal neurons reduced dendritic spine actin's mobility, caused retraction of mushroom spines, and inhibited spine maturation. These effects were further enhanced by inactivating iron-binding residues of Lcn-2, suggesting that they were facilitated by the iron-free form of Lcn-2. Concurrently, disruption of the Lcn2 gene in mice promoted stress-induced increase in spine density and caused an increase in the proportion of mushroom spines. The above changes correlated with higher excitability of CA1 principal neurons and with elevated stress-induced anxiety in Lcn-2(-/-) mice. Our study demonstrates that lipocalin-2 promotes stress-induced changes in spine morphology and function to regulate neuronal excitability and anxiety.


Assuntos
Proteínas de Fase Aguda/fisiologia , Ansiedade/fisiopatologia , Espinhas Dendríticas/fisiologia , Lipocalinas/fisiologia , Neurônios/fisiologia , Proteínas Oncogênicas/fisiologia , Proteínas de Fase Aguda/genética , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Imuno-Histoquímica , Lipocalina-2 , Lipocalinas/genética , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Proteínas Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real
3.
Int J Biochem Cell Biol ; 44(4): 578-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22265656

RESUMO

Eph receptors have been the subject of intense research since their discovery. Their widespread pattern of expression, involvement in a variety of important cellular phenomena and unique mode of action have stimulated interest in their role in health and disease across biological and medical domains. However, the function of Ephs in nervous system development and plasticity remains the best characterised. Recent advances suggest that Ephs play an important role in the development of brain pathologies. This review focuses on their basic structure and function and discusses the latest research on their role in neurological diseases.


Assuntos
Efrinas/metabolismo , Terapia de Alvo Molecular/métodos , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Receptor EphA1/metabolismo , Animais , Efrinas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doenças do Sistema Nervoso/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Receptor EphA1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA