Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 92(9): 6366-6373, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32267681

RESUMO

The use of NMR spectroscopy has emerged as a premier tool to characterize the higher order structure of protein therapeutics and in particular IgG1 monoclonal antibodies (mAbs). Due to their large size, traditional 1H-15N correlation experiments have proven exceedingly difficult to implement on mAbs, and a number of alternative techniques have been proposed, including the one-dimensional (1D) 1H protein fingerprint by line shape enhancement (PROFILE) method and the two-dimensional (2D) 1H-13C methyl correlation-based approach. Both 1D and 2D approaches have relative strengths and weaknesses, related to the inherent sensitivity and resolution of the respective methods. To further increase the utility of NMR to the biopharmaceutical community, harmonized criteria for decision making in employing 1D and 2D approaches for mAb characterization are warranted. To this end, we have conducted an interlaboratory comparative study of the 1D PROFILE and 2D methyl methods on several mAbs samples to determine the degree to which each method is suited to detect spectral difference between the samples and the degree to which results from each correlate with one another. Results from the study demonstrate both methods provide statistical data highly comparable to one another and that each method is capable of complementing the limitations commonly associated with the other, thus providing a better overall picture of higher order structure.


Assuntos
Imunoglobulina G/análise , Ressonância Magnética Nuclear Biomolecular , Isótopos de Carbono , Prótons
2.
J Am Chem Soc ; 140(48): 16783-16791, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30395461

RESUMO

The virulence and broad host range of Fusarium graminearum is associated with its ability to secrete an arsenal of phytotoxic secondary metabolites, including the regulated mycotoxins belonging to the deoxynivalenol family. The TRI genes responsible for the biosynthesis of deoxynivalenol and related compounds are usually expressed during fungal infection. However, the F. graminearum genome harbors an array of unexplored biosynthetic gene clusters that are also co-induced with the TRI genes, including the nonribosomal peptide synthetase 8 ( NRPS8) gene cluster. Here, we identify two bicyclic lipopeptides, gramillin A (1) and B (2), as the biosynthetic end products of NRPS8. Structural elucidation by high-resolution LC-MS and NMR, including 1H-15N-13C HNCO and HNCA on isotopically enriched compounds, revealed that the gramillins possess a fused bicyclic structure with ring closure of the main peptide macrocycle occurring via an anhydride bond. Through targeted gene disruption, we characterized the GRA1 biosynthetic gene and its transcription factor GRA2 in the NRPS8 gene cluster. Further, we show that the gramillins are produced in planta on maize silks, promoting fungal virulence on maize but have no discernible effect on wheat head infection. Leaf infiltration of the gramillins induces cell death in maize, but not in wheat. Our results show that F. graminearum deploys the gramillins as a virulence agent in maize, but not in wheat, thus displaying host-specific adaptation.


Assuntos
Proteínas Fúngicas/isolamento & purificação , Lipopeptídeos/isolamento & purificação , Micotoxinas/isolamento & purificação , Peptídeos Cíclicos/isolamento & purificação , Fatores de Virulência/isolamento & purificação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Fusarium/química , Fusarium/genética , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Família Multigênica , Micotoxinas/biossíntese , Micotoxinas/química , Peptídeo Sintases/genética , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Triticum/microbiologia , Fatores de Virulência/biossíntese , Fatores de Virulência/química , Zea mays/microbiologia
3.
Pharm Res ; 32(10): 3365-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26043856

RESUMO

PURPOSE: Filgrastim is the generic name for recombinant methionyl human granulocyte colony-stimulating factor (r-metHuG-CSF). It is marketed under the brand name Neupogen® by Amgen. Since this product has lost patent protection, many biosimilar versions have been approved or are in the process of filing for market authorization throughout the world. Here we show that NMR spectroscopy can be used to assess the three-dimensional structure of the active ingredient in the formulated approved product Neupogen®. METHODS: Recombinant metHuG-CSF was prepared in E. coli and isotopically enriched with (13)C and (15) N isotopes. NMR spectroscopy was used to study the effects of excipients on the conformation. RESULTS: The effects of pH variation on the amide chemical shifts suggest the presence of cation-pi interactions between His-79 and Trp-118, and His-156-Trp-58-His-52 that stabilizes the conformation at low pH. This may be associated with a small local conformational change. The NMR data showed that polysorbate does not interact significantly with filgrastim thus allowing the collection of spectra in the presence of 20 times the formulation concentration in the sample. However, at higher detergent concentrations a reduction of signal intensity is observed. Conclusions The NMR fingerprint assay applied to filgrastim (Neupogen® and a CRS from the European Pharmacopeia (EP)) provided residue specific information of the structure of the drug substance. In addition to current methods, the ability to assess the conformation with a high degree of resolution can greatly facilitate comparability exercises.


Assuntos
Excipientes/química , Filgrastim/química , Filgrastim/genética , Mutação/genética , Química Farmacêutica/métodos , Escherichia coli/genética , Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/genética , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
J Biol Chem ; 288(1): 247-54, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23184955

RESUMO

Enzymatic addition of GalNAc to isotopically labeled IFNα2a produced in Escherichia coli yielded the O-linked glycoprotein GalNAcα-[(13)C,(15)N]IFNα2a. The three-dimensional structure of GalNAcα-IFNα2a has been determined in solution by NMR spectroscopy at high resolution. Proton-nitrogen heteronuclear Overhauser enhancement measurements revealed that the addition of a single monosaccharide unit at Thr-106 significantly slowed motions of the glycosylation loop on the nanosecond time scale. Subsequent addition of a Gal unit produced Gal(ß1,3)GalNAcα-[(13)C,(15)N]IFNα2a. This extension resulted in a further decrease in the dynamics of this loop. The methodology used here allowed the first such description of the structure and dynamics of an O-glycoprotein and opens the way to the study of this class of proteins.


Assuntos
Acetilgalactosamina/química , Interferon-alfa/metabolismo , Polissacarídeos/química , Treonina/química , Acetilgalactosamina/genética , Biologia Computacional/métodos , Dissulfetos/química , Escherichia coli/metabolismo , Glicoproteínas/química , Glicosilação , Humanos , Interferon alfa-2 , Interferons/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Conformação Proteica , Proteínas Recombinantes/metabolismo
5.
Biomol NMR Assign ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926254

RESUMO

Adalimumab is a therapeutic monoclonal antibody developed to target human TNF an important mediator of immune-mediated inflammatory diseases such as rheumatoid arthritis, amongst others. The 48 kDa Fab fragment of adalimumab was produced in Escherichia coli using a single chain approach to allow complete isotopic incorporation of deuterium, carbon-13 and nitrogen-15 along with the protonated isoleucine-d, valine and leucine methyl groups. Here we report the near complete resonance assignment of the polypeptide backbone and the methyl groups of isoleucine, leucine and valine residues.

6.
Biomol NMR Assign ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717571

RESUMO

Trastuzumab is a therapeutic monoclonal antibody developed to target human epidermal growth factor receptor 2 (HER2) present at higher levels in early cancers. Here we report the near complete resonance assignment of trastuzumab-scFab fragment backbone and the methyl groups of isoleucine, leucine and valine residues, as well as their stereo-assignments. The antibody fragment was produced using a single chain approach in Escherichia coli.

7.
J Biol Chem ; 287(3): 1915-22, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22128151

RESUMO

The three-dimensional structure of PrP110-136, a peptide encompassing the conserved hydrophobic region of the human prion protein, has been determined at high resolution in dodecylphosphocholine micelles by NMR. The results support the conclusion that the (Ctm)PrP, a transmembrane form of the prion protein, adopts a different conformation than the reported structures of the normal prion protein determined in solution. Paramagnetic relaxation enhancement studies with gadolinium-diethylenetriaminepentaacetic acid indicated that the conserved hydrophobic region peptide is not inserted symmetrically in the micelle, thus suggesting the presence of a guanidium-phosphate ion pair involving the side chain of the terminal arginine and the detergent headgroup. Titration of dodecylphosphocholine into a solution of PrP110-136 revealed the presence of a surface-bound species. In addition, paramagnetic probes located the surface-bound peptide somewhere below the micelle-water interface when using the inserted helix as a positional reference. This localization of the unknown population would allow a similar ion pair interaction.


Assuntos
Micelas , Peptídeos/química , Fosforilcolina/análogos & derivados , Príons/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/química , Estrutura Secundária de Proteína
8.
Biomol NMR Assign ; 17(1): 75-81, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36856943

RESUMO

The monoclonal antibody (mAb) protein class has become a primary therapeutic platform for the production of new life saving drug products. MAbs are comprised of two domains: the antigen-binding fragment (Fab) and crystallizable fragment (Fc). Despite the success in the clinic, NMR assignments of the complete Fab domain have been elusive, in part due to problems in production of properly folded, triply-labeled 2H,13C,15N Fab domain. Here, we report the successful recombinant expression of a triply-labeled Fab domain, derived from the standard IgG1κ known as NISTmAb, in yeast. Using the 2H,13C,15N Fab domain, we assigned 94% of the 1H, 13C, and 15N backbone atoms.


Assuntos
Fragmentos Fab das Imunoglobulinas , Saccharomyces cerevisiae , Fragmentos Fab das Imunoglobulinas/química , Ressonância Magnética Nuclear Biomolecular , Anticorpos Monoclonais/química , Espectroscopia de Ressonância Magnética
9.
PLoS One ; 18(11): e0294406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38019850

RESUMO

The importance and fast growth of therapeutic monoclonal antibodies, both innovator and biosimilar products, have triggered the need for the development of characterization methods at high resolution such as nuclear magnetic resonance (NMR) spectroscopy. However, the full power of NMR spectroscopy cannot be unleashed without labelling the mAb of interest with NMR-active isotopes. Here, we present strategies using either Komagataella phaffii (Pichia pastoris) or Escherichia coli that can be widely applied for the production of the antigen-binding fragment (Fab) of therapeutic antibodies of immunoglobulin G1 kappa isotype. The E. coli approach consists of expressing Fab fragments as a single polypeptide chain with a cleavable linker between the heavy and light chain in inclusion bodies, while K. phaffii secretes a properly folded fragment in the culture media. After optimization, the protocol yielded 10-45 mg of single chain adalimumab-Fab, trastuzumab-Fab, rituximab-Fab, and NISTmAb-Fab per liter of culture. Comparison of the 2D-1H-15N-HSQC spectra of each Fab fragment, without their polyhistidine tag and linker, with the corresponding Fab from the innovator product showed that all four fragments have folded into the correct conformation. Production of 2H-13C-15N-adalimumab-scFab and 2H-13C-15N-trastuzumab-scFab (>98% enrichment for all three isotopes) yielded NMR samples where all amide deuterons have completely exchanged back to proton during the refolding procedure.


Assuntos
Escherichia coli , Fragmentos Fab das Imunoglobulinas , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/química , Escherichia coli/genética , Pichia , Adalimumab/uso terapêutico , Isótopos de Carbono , Anticorpos Monoclonais , Trastuzumab
10.
Biomol NMR Assign ; 16(2): 391-398, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36083574

RESUMO

Monoclonal antibodies (mAbs) therapeutics are the largest and fastest growing class of biologic drugs, amongst which, the vast majority are immunoglobulin G1 (IgG1). Their antigen binding abilities are used for the treatment of immunologic diseases, cancer therapy, reversal of drug effects, and targeting viruses and bacteria. The high importance of therapeutic mAbs and their derivatives has called for the generation of well-characterized standards for method development and calibration. One such standard, the NISTmAb RM 8621 based on the antibody motavizumab, has been developed by the National Institute of Standards and Technologies (NIST) in the US. Here, we present the resonance assignment of the single chain variable fragment, NISTmAb-scFv, that was engineered by linking the variable domains of the heavy and light chains of the NISTmAb. Also, addition of a peptide, corresponding to the target antigen of motavizumab, to samples of NISTmAb-scFv has induced chemical shift perturbations on residues lining the antigen binding interface thereby indicating proper folding of the NISTmAb-scFv.


Assuntos
Produtos Biológicos , Anticorpos de Cadeia Única , Anticorpos Monoclonais/química , Imunoglobulina G/química , Ressonância Magnética Nuclear Biomolecular
11.
Front Immunol ; 13: 972168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304448

RESUMO

Monoclonal antibodies (mAbs) comprise an essential type of biologic therapeutics and are used to treat diseases because of their anti-cancer and anti-inflammatory properties, and their ability to protect against respiratory infections. Its production involves post-translational glycosylation, a biosynthetic process that conjugates glycans to proteins, which plays crucial roles in mAb bioactivities including effector functions and pharmacokinetics. These glycans are heterogeneous and have diverse chemical structures whose composition is sensitive to manufacturing conditions, rendering the understanding of how specific glycan structures affect mAb bioactivity challenging. There is a need to delineate the effects of specific glycans on mAb bioactivity to determine whether changes in certain glycosylation profiles (that can occur during manufacturing) will significantly affect product quality. Using enzymatic transglycosylation with chemically-defined N-glycans, we show that galactosylation at a specific location of N-glycans in an afucosylated anti-viral mAb is responsible for FcγRIIIA binding and antibody-dependent cell-mediated cytotoxicity (ADCC) activity. We report a facile method to obtain purified asymmetric mono-galactosylated biantennary complex N-glycans, and their influence on bioactivity upon incorporation into an afucosylated mAb. Using ELISA, surface plasmon resonance and flow cytometry, we show that galactosylation of the α6 antenna, but not the α3 antenna, consistently increases FcγRIIIA binding affinity. We confirm its relevance in an anti-viral model of respiratory syncytial virus (RSV) using an adapted ADCC reporter assay. We further correlate this structure-function relationship to the interaction of the galactose residue of the α6 antenna with the protein backbone using 2D-1H-15N-NMR, which showed that galactosylation of at this location exhibited chemical shift perturbations compared to glycoforms lacking this galactose residue. Our results highlight the importance of identifying and quantifying specific glycan isomers to ensure adequate quality control in batch-to-batch and biosimilar comparisons.


Assuntos
Anticorpos Monoclonais , Galactose , Anticorpos Monoclonais/farmacologia , Antivirais , Citotoxicidade Celular Dependente de Anticorpos , Polissacarídeos/química , Anticorpos Antivirais
12.
ACS Omega ; 5(49): 31845-31857, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344838

RESUMO

Product excipients are used to confer a number of desirable properties on the drug substance to maintain or improve stability and facilitate drug delivery. This is especially important for products where the active pharmaceutical ingredient (API) is a recombinant protein. In this study, we aimed to determine if excipients and formulation conditions affect the structure and/or modulate the dynamics of the protein API of filgrastim products. Samples of uniformly labeled 15N-Met-granulocyte-colony stimulating factor (GCSF) were prepared at 100 µM (near formulation concentration) with various concentrations of individual components (polysorbate-20 and -80, sorbitol) and three pH values. Nuclear magnetic resonance (NMR) spectroscopy techniques were applied to measure chemical shift perturbation (CSP) to detect structural changes, and relaxation parameters (T 1, T 2, and heteronuclear Overhauser effect) were measured to probe the effects on protein backbone motions. In parallel, the same solution conditions were subjected to protein thermal unfolding studies monitored by circular dichroism spectropolarimetry (CD). Detergents (polysorbate-20 and 80) do not induce any observable changes on the protein structure and do not modify its dynamics at formulation concentration. Lowering pH to 4.0, a condition known to stabilize the conformation of filgrastim, as well as the addition of sorbitol produced changes of the fast motion dynamics in the nanosecond and picosecond timescale. NMR-derived order parameters, which measure the local conformational entropy of the protein backbone, show that lowering pH leads to a compaction of the four-helix bundle while the addition of sorbitol relaxes helices B and C, thereby reducing the mobility of loop CD. CSPs and measurements of protein dynamics via NMR-derived order parameters provide a description in structural and motional terms at an atomic resolution on how formulation components contribute to the stabilization of filgrastim products.

13.
J Pharm Biomed Anal ; 163: 144-152, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30296716

RESUMO

The advent of monoclonal antibody biosimilar products has stimulated the development of analytical methods that can better characterize an important quality attribute, namely the higher order structure (HOS). Here, we propose a simple approach based on heteronuclear 2D NMR techniques at natural abundance for generating spectral fingerprints of the HOS at high resolution. We show that the proposed method can assess the HOS of six therapeutic products, adalimumab (Humira®), bevacizumab (Avastin®), infliximab (Remicade®), rituximab (Rituxan®), trastuzumab (Herceptin®), and Etanercept (Enbrel®). After treatment with immobilized papain, the purified fragments (Fab and Fc) were analyzed by 2D proton-nitrogen and proton-carbon NMR correlations. All Fab and Fc fragments produced high-resolution 2D-NMR spectra from which assessment of their higher order structure can be performed in the context of comparability studies. In particular, the two different sequences of Fc fragments could be unambiguously distinguished. The results show that it is possible to obtain structurally dependent information at amino acid resolution of these important therapeutic agents.


Assuntos
Medicamentos Biossimilares/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Adalimumab/química , Bevacizumab/química , Etanercepte/química , Estudos de Viabilidade , Infliximab/química , Ressonância Magnética Nuclear Biomolecular/instrumentação , Papaína/química , Estrutura Secundária de Proteína , Rituximab/química , Trastuzumab/química
14.
J Pharm Biomed Anal ; 166: 105-112, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30640042

RESUMO

USP's peptide reference standards content is typically determined using an HPLC assay against an external standard for which the purity was determined by a mass balance approach. To explore the use of other analytical methods, the USP Biologics Department conducted a multi-laboratory collaborative study. The study determined the inter-laboratory variability for peptide quantitation using the following methods: HPLC assay, quantitative nuclear magnetic resonance (qNMR) spectroscopy, or amino acid analysis (AAA). The three methods were compared with regard to their suitability for quantitation of the nonapeptide oxytocin. In this study, the HPLC assay method using the same peptide bulk material as the standard showed the lowest inter-lab variability. The coefficient of variation (%CV) was calculated without counting the uncertainty associated with the purity assignment of the standard with mass balance. The proton qNMR method is a direct measurement of the peptide against an internal standard, which is not difficult to perform under common laboratory conditions. Because of the simpler operation and shorter analytical time, qNMR as a primary method for peptide reference standard value assignment deserves further exploration.


Assuntos
Técnicas de Química Analítica/métodos , Ocitocina/análise , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Padrões de Referência , Reprodutibilidade dos Testes
15.
MAbs ; 11(1): 94-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30570405

RESUMO

The increased interest in using monoclonal antibodies (mAbs) as a platform for biopharmaceuticals has led to the need for new analytical techniques that can precisely assess physicochemical properties of these large and very complex drugs for the purpose of correctly identifying quality attributes (QA). One QA, higher order structure (HOS), is unique to biopharmaceuticals and essential for establishing consistency in biopharmaceutical manufacturing, detecting process-related variations from manufacturing changes and establishing comparability between biologic products. To address this measurement challenge, two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) methods were introduced that allow for the precise atomic-level comparison of the HOS between two proteins, including mAbs. Here, an inter-laboratory comparison involving 26 industrial, government and academic laboratories worldwide was performed as a benchmark using the NISTmAb, from the National Institute of Standards and Technology (NIST), to facilitate the translation of the 2D-NMR method into routine use for biopharmaceutical product development. Two-dimensional 1H,15N and 1H,13C NMR spectra were acquired with harmonized experimental protocols on the unlabeled Fab domain and a uniformly enriched-15N, 20%-13C-enriched system suitability sample derived from the NISTmAb. Chemometric analyses from over 400 spectral maps acquired on 39 different NMR spectrometers ranging from 500 MHz to 900 MHz demonstrate spectral fingerprints that are fit-for-purpose for the assessment of HOS. The 2D-NMR method is shown to provide the measurement reliability needed to move the technique from an emerging technology to a harmonized, routine measurement that can be generally applied with great confidence to high precision assessments of the HOS of mAb-based biotherapeutics.


Assuntos
Anticorpos Monoclonais/química , Biofarmácia/normas , Laboratórios/normas , Espectroscopia de Ressonância Magnética/métodos , Humanos , Reprodutibilidade dos Testes
16.
J Pharm Biomed Anal ; 150: 72-79, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29216588

RESUMO

Cross-reacting-material 197 (CRM197) is a naturally occurring non-toxic mutant of diphtheria toxin (DT) that is one of the few carrier protein used in the manufacture of polysaccharide vaccines targeting bacterial pathogens such as Neisseria meningitidis, Streptococcus pneumaniae and Haemophilus influenzae. A detailed explanation in structural terms for the lack of toxicity has started to emerge with the report of the X-ray structure of CRM197. Here, we present an NMR spectroscopy study of the wild-type catalytic domain of diphtheria toxin and the effects of mutations at residue 52 on its conformation. We utilized a strategy that consisted of gradually inducing steric perturbations by increasing the side chain size of the residue. Results show that the catalytic domain does not tolerate even the smallest perturbation, such as a glycine to alanine substitution, resulting in the destabilization of domain fold leading to protein aggregation. The observed behavior is further exacerbated with the substitution of amino acids with larger side chains. These findings support the concept that the lack of toxicity observed for CRM197 is the result of a highly unstable conformation of its catalytic domain that, upon insertion into the cell, cannot properly refold and perform its catalytic activity responsible for the arrest of all cellular protein synthesis.


Assuntos
Proteínas de Bactérias/genética , Glicina/genética , Espectroscopia de Ressonância Magnética/métodos , Substituição de Aminoácidos/genética , Proteínas de Bactérias/química , Domínio Catalítico , Mutação
17.
J Med Chem ; 50(4): 794-806, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17300164

RESUMO

The discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats. Rat bile duct cannulation studies revealed that high concentrations of parent drug were present in the biliary fluid (Cmax = 1100 microM for 6 and 3900 microM for 7). This pharmacokinetic liability was circumvented by replacing the 7-methylsulfone substituent present in 6 and 7 with a fluorine atom resulting in antagonists with diminished propensity for biliary excretion and with superior pharmacokinetic profiles. Further optimization led to the discovery of the potent and selective DP antagonist 13.


Assuntos
Indóis/síntese química , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Obstrução das Vias Respiratórias/tratamento farmacológico , Animais , Bile/metabolismo , Ligação Competitiva , Cães , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Indóis/farmacocinética , Indóis/farmacologia , Macaca fascicularis , Masculino , Camundongos , Microssomos/metabolismo , Descongestionantes Nasais/síntese química , Descongestionantes Nasais/farmacocinética , Descongestionantes Nasais/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Ovinos , Estereoisomerismo , Relação Estrutura-Atividade
18.
J Pharm Biomed Anal ; 138: 351-356, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28254519

RESUMO

A number of recombinant protein therapeutic products, such as filgrastim (methionyl granulocyte colony stimulating factor [Met-GCSF] used to boost the immune system in chemotherapy treated cancer patients), and interferon alpha-2 (used for the treatment of various viral infections), have been chemically modified with the addition of a polyethylene glycol (PEG) chain. This modification prolongs residency of the drug in the body and reduces metabolic degradation, which allows less frequent administration of the products. Here we show how NMR spectroscopy methods can assess the higher order structure (HOS) of pegylated-filgrastim (Neulasta®), pegylated interferon-α2a (Pegasys®) pegylated interferon-α2b (PEG-Intron®) purchased from the marketplace. The addition of the PEG moiety effectively doubles the molecular weight of the three products. This presents a significant challenge for the application of NMR techniques. Nevertheless, the results showed that high-resolution spectra could be recorded for two of the three products. Comparison of the spectra of the pegylated protein and the non-pegylated protein shows that the chemical modification did not alter the HOS of these proteins.


Assuntos
Filgrastim/química , Polietilenoglicóis/química , Proteínas Recombinantes/química , Bioensaio/métodos , Interferon alfa-2 , Interferon-alfa/química , Imageamento por Ressonância Magnética/métodos
19.
J Pharm Biomed Anal ; 141: 229-233, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28454057

RESUMO

The higher order structure (HOS) of biotherapeutics is a critical quality attribute that can be evaluated by nuclear magnetic resonance (NMR) spectroscopy at atomic resolution. NMR spectral mapping of HOS can be used to establish HOS consistency of a biologic across manufacturing changes or to compare a biosimilar to an innovator reference product. A previous inter-laboratory study performed using filgrastim drug products demonstrated that two-dimensional (2D)-NMR 1HN-15NH heteronuclear correlation spectroscopy is a highly robust and precise method for mapping the HOS of biologic drugs at natural abundance using high sensitivity NMR 'cold probes.' Here, the applicability of the 2D-NMR method to fingerprint the HOS of filgrastim products is demonstrated using lower sensitivity, room temperature NMR probes. Combined chemical shift deviation and principal component analysis are used to illustrate the performance and inter-laboratory precision of the 2D-NMR method when implemented on room temperature probes.


Assuntos
Espectroscopia de Ressonância Magnética , Filgrastim , Temperatura
20.
PLoS One ; 11(12): e0168021, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27930722

RESUMO

A peptide encompassing the conserved hydrophobic region and the first ß-strand of the prion protein (PrP(110-136)) shown to interact with the surface of dodecylphosphocholine micelles adopts an α-helical conformation that is localized below the head-group layer. This surface-bound peptide has a half-life of one day, and readily initiates the formation of amyloid fibrils. The presence of the latter was confirmed using birefringence microscopy upon Congo red binding and thioflavin T-binding induced fluorescence. The observation of this metastable α-helical conformer provides a unique snapshot of the early steps of the inter-conversion pathway. These findings together with the body of evidence from the prion literature allowed us to propose a mechanism for the conversion of PrPC to amyloid material.


Assuntos
Amiloide/metabolismo , Micelas , Fosforilcolina/análogos & derivados , Proteínas Priônicas/biossíntese , Benzotiazóis , Birrefringência , Humanos , Espectroscopia de Ressonância Magnética , Microscopia , Fosforilcolina/farmacologia , Proteínas Priônicas/química , Conformação Proteica em alfa-Hélice , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA