Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cerebellum ; 21(1): 39-47, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33893614

RESUMO

Ataxia telangiectasia (A-T) is a progressive and life-limiting disease associated with cerebellar ataxia due to progressive cerebellar degeneration. In addition to ataxia, which is described in detail, the presence of chorea, dystonia, oculomotor apraxia, athetosis, parkinsonism, and myoclonia are typical manifestations of the disease. The study aimed to evaluate the specificity and sensitivity of neurofilament light chain (NfL) as a biomarker of neurodegeneration in relation to SARA score. In this prospective trial, one visit of 42 A-T patients aged 1.3-25.6 years (mean 11.6 ± 7.3 years) was performed, in which NfL was determined from serum by ELISA. Additionally, a neurological examination of the patients was performed. Blood was collected from 19 healthy volunteers ≥ 12 years of age. We found significantly increased levels of NfL in patients with A-T compared to healthy controls (21.5 ± 3.6 pg/mL vs. 9.3 ± 0.49 pg/mL, p ≤ 0.01). There was a significant correlation of NfL with age, AFP, and SARA. NfL is a new potential progression biomarker in blood for neurodegeneration in A-T which increases with age.


Assuntos
Ataxia Telangiectasia , Ataxia Cerebelar , Adolescente , Adulto , Ataxia Telangiectasia/diagnóstico , Biomarcadores , Criança , Pré-Escolar , Humanos , Lactente , Filamentos Intermediários , Proteínas de Neurofilamentos , Estudos Prospectivos , Adulto Jovem
2.
Cerebellum ; 20(1): 31-40, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32815118

RESUMO

Ataxia telangiectasia (A-T) is a devastating multi-system disorder characterized by progressive cerebellar ataxia and immunodeficiency. The neurological decline may be caused by multiple factors of which ongoing inflammation and oxidative stress may play a dominant role. The objective of the present investigation was to determine cerebrospinal fluid (CSF) proteins and possible low-grade inflammation and its relation to age and neurological deterioration. In the present study, we investigated 15 patients with A-T from 2 to 16 years. Our investigation included blood and CSF tests, clinical neurological examination, A-T score, and MRI findings. The albumin ratio (AR) was analyzed to determine the blood-brain-barrier function. In addition, inflammatory cytokines (IL-1α, IL-6, IL-8, IL-12 p40, IL-17A, IFN-γ, TNF-α) were measured by the multiplex cytometric bead array. We compared the results with those from an age-matched control group. Three of the A-T patients were analyzed separately (one after resection of a cerebral meningioma, one after radiation and chemotherapy due to leukemia, one after stem cell transplantation). Patient had significantly more moderate and severe side effects due to CSF puncture (vomiting, headache, need for anti-emetic drugs) compared with healthy controls. Total protein, albumin, and the AR increased with age indicating a disturbed blood barrier function in older children. There were no differences for cytokines in serum and CSF with the exception of IL-2, which was significantly higher in controls in serum. The AR is significantly altered in A-T patients, but low-grade inflammation is not detectable in serum and CSF.


Assuntos
Ataxia Telangiectasia/líquido cefalorraquidiano , Adolescente , Envelhecimento , Ataxia Telangiectasia/diagnóstico por imagem , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/patologia , Criança , Pré-Escolar , Citocinas/sangue , Feminino , Humanos , Interleucina-17/líquido cefalorraquidiano , Interleucina-2/líquido cefalorraquidiano , Imageamento por Ressonância Magnética , Masculino , Exame Neurológico , Albumina Sérica/análise , Punção Espinal/efeitos adversos
3.
Neurobiol Dis ; 127: 114-130, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30763678

RESUMO

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear how selective neural circuits become vulnerable and finally undergo atrophy. We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein targets of Parkin activity, an ubiquitin E3 ligase. Thus, we now used aged Parkin-knockout (KO) mouse brain for a global quantification of ubiquitylated peptides by mass spectrometry (MS). This approach confirmed the most abundant substrate to be VDAC3, a mitochondrial outer membrane porin that modulates calcium flux, while uncovering also >3-fold dysregulations for neuron-specific factors. Ubiquitylation decreases were prominent for Hippocalcin (HPCA), Calmodulin (CALM1/CALML3), Pyruvate Kinase (PKM2), sodium/potassium-transporting ATPases (ATP1A1/2/3/4), the Rab27A-GTPase activating protein alpha (TBC1D10A) and an ubiquitin ligase adapter (DDB1), while strong increases occurred for calcium transporter ATP2C1 and G-protein subunits G(i)/G(o)/G(Tr). Quantitative immunoblots validated elevated abundance for the electrogenic pump ATP1A2, for HPCA as neuron-specific calcium sensor, which stimulates guanylate cyclases and modifies axonal slow afterhyperpolarization (sAHP), and for the calcium-sensing G-protein GNA11. We assessed if compensatory molecular regulations become insufficient over time, leading to functional deficits. Patch clamp experiments in acute Parkin-KO brain slices indeed revealed alterations of the electrophysiological properties in aged noradrenergic locus coeruleus (LC) neurons. LC neurons of aged Parkin-KO brain showed an acceleration of the spontaneous pacemaker frequency, a reduction in sAHP and shortening of action potential duration, without modulation of KCNQ potassium currents. These findings indicate altered calcium-dependent excitability in a PARK2 model of PD, mediated by diminished turnover of potential Parkin targets such as ATP1A2 and HPCA. The data also identified further novel Parkin substrate candidates like SIRT2, OTUD7B and CUL5. Our elucidation of neuron-specific mechanisms of PD pathogenesis helps to explain the known exceptional susceptibility of noradrenergic and dopaminergic projections to alterations of calcium homeostasis and its mitochondrial buffering.


Assuntos
Neurônios Adrenérgicos/metabolismo , Encéfalo/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Hipocalcina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Espectrometria de Massas , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Técnicas de Patch-Clamp , Ubiquitina-Proteína Ligases/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
4.
Clin Genet ; 94(3-4): 346-350, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29756284

RESUMO

Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by the unstable expansion of a cytosine-adenine-guanine (CAG)/cytosine-adenine-adenine (CAA) repeat in the ATXN2 gene, which normally encodes 22 glutamines (Q22). A large study was conducted to characterize the CAG/CAA repeat intergenerational instability in SCA2 families. Large normal alleles (Q24-31) were significantly more unstable upon maternal transmissions. In contrast, expanded alleles (Q32-750) were significantly more unstable during paternal transmissions, in correlation with repeat length. Significant correlations were found between the instability and the age at conception in paternal transmissions. In conclusion, intergenerational instability at ATXN2 locus is influenced by the sex, repeat length and age at conception of the transmitting parent. These results have profound implications for genetic counseling services.


Assuntos
Fatores Etários , Ataxina-2/genética , Impressão Genômica , Instabilidade Genômica , Ataxias Espinocerebelares/genética , Repetições de Trinucleotídeos , Adulto , Alelos , Feminino , Humanos , Masculino
6.
Neurogenetics ; 16(3): 181-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25721894

RESUMO

Spinocerebellar ataxia type 2 (SCA2) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders, caused or modified by an unstable CAG-repeat expansion in the SCA2 gene, which encodes a polyglutamine (polyQ) domain expansion in ataxin-2 (ATXN2). ATXN2 is an RNA-binding protein and interacts with the poly(A)-binding protein PABPC1, localizing to ribosomes at the rough endoplasmic reticulum. Under cell stress, ATXN2, PABPC1 and small ribosomal subunits are relocated to stress granules, where mRNAs are protected from translation and from degradation. It is unknown whether ATXN2 associates preferentially with specific mRNAs or how it modulates RNA processing. Here, we investigated the RNA profile of the liver and cerebellum from Atxn2 knockout (Atxn2 (-/-)) mice at two adult ages, employing oligonucleotide microarrays. Prominent increases were observed for Lsm12/Paip1 (>2-fold), translation modulators known as protein interactor/competitor of ATXN2 and for Plin3/Mttp (>1.3-fold), known as apolipoprotein modulators in agreement with the hepatosteatosis phenotype of the Atxn2 (-/-) mice. Consistent modest upregulations were also observed for many factors in the ribosome and the translation/secretion apparatus. Quantitative reverse transcriptase PCR in liver tissue validated >1.2-fold upregulations for the ribosomal biogenesis modulator Nop10, the ribosomal components Rps10, Rps18, Rpl14, Rpl18, Gnb2l1, the translation initiation factors Eif2s2, Eif3s6, Eif4b, Pabpc1 and the rER translocase factors Srp14, Ssr1, Sec61b. Quantitative immunoblots substantiated the increased abundance of NOP10, RPS3, RPS6, RPS10, RPS18, GNB2L1 in SDS protein fractions, and of PABPC1. In mouse embryonal fibroblasts, ATXN2 absence also enhanced phosphorylation of the ribosomal protein S6 during growth stimulation, while impairing the rate of overall protein synthesis rates, suggesting a block between the enhanced translation drive and the impaired execution. Thus, the physiological role of ATXN2 subtly modifies the abundance of cellular translation factors as well as global translation.


Assuntos
Ataxina-2/genética , RNA/metabolismo , Transcriptoma , Animais , Cerebelo/metabolismo , Perfilação da Expressão Gênica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína I de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Transcrição Gênica
7.
Neuropathol Appl Neurobiol ; 39(6): 634-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23363055

RESUMO

AIMS: Spinocerebellar ataxia type 2 (SCA2) belongs to the CAG repeat or polyglutamine diseases. Along with a large variety of motor, behavioural and neuropsychological symptoms the clinical picture of patients suffering from this autosomal dominantly inherited ataxia may also include deficits of attention, impairments of memory, as well as frontal-executive and visuospatial dysfunctions. As the possible morphological correlates of these cognitive SCA2 deficits are unclear we examined the cholinergic basal forebrain nuclei, which are believed to be crucial for several aspects of normal cognition and may contribute to impairments of cognitive functions under pathological conditions. METHODS: We studied pigment-Nissl-stained thick tissue sections through the cholinergic basal forebrain nuclei (that is, medial septal nucleus, nuclei of the diagonal band of Broca, basal nucleus of Meynert) of four clinically diagnosed and genetically confirmed SCA2 patients and of 13 control individuals according to the pathoanatomical approach. The pathoanatomical results were confirmed by additional quantitative investigations of these nuclei in the SCA2 patients and four age- and gender-matched controls. RESULTS: Our study revealed a severe and consistent neuronal loss in all of the cholinergic basal forebrain nuclei (medial septal nucleus: 72%; vertical nucleus of the diagonal band of Broca: 74%; horizontal limb of the diagonal band of Broca: 72%; basal nucleus of Meynert: 86%) of the SCA2 patients studied. Damage to the basal forebrain nuclei was associated with everyday relevant cognitive deficits only in our SCA2 patient with an additional Braak and Braak stage V Alzheimer's disease (AD)-related tau pathology. CONCLUSIONS: The findings of the present study: (1) indicate that the mutation and pathological process underlying SCA2 play a causative role for this severe degeneration of the cholinergic basal forebrain nuclei and (2) may suggest that degeneration of the cholinergic basal forebrain nuclei per se is not sufficient to cause profound and global dementia detrimental to everyday practice and activities of daily living.


Assuntos
Núcleo Basal de Meynert/patologia , Neurônios Colinérgicos/patologia , Feixe Diagonal de Broca/patologia , Núcleos Septais/patologia , Ataxias Espinocerebelares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Nat Genet ; 26(2): 211-5, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11017080

RESUMO

Autosomal dominant optic atrophy (ADOA) is the most prevalent hereditary optic neuropathy resulting in progressive loss of visual acuity, centrocoecal scotoma and bilateral temporal atrophy of the optic nerve with an onset within the first two decades of life. The predominant locus for this disorder (OPA1; MIM 165500) has been mapped to a 1.4-cM interval on chromosome 3q28-q29 flanked by markers D3S3669 and D3S3562 (ref. 3). We established a PAC contig covering the entire OPA1 candidate region of approximately 1 Mb and a sequence skimming approach allowed us to identify a gene encoding a polypeptide of 960 amino acids with homology to dynamin-related GTPases. The gene comprises 28 coding exons and spans more than 40 kb of genomic sequence. Upon sequence analysis, we identified mutations in seven independent families with ADOA. The mutations include missense and nonsense alterations, deletions and insertions, which all segregate with the disease in these families. Because most mutations probably represent null alleles, dominant inheritance of the disease may result from haploinsufficiency of OPA1. OPA1 is widely expressed and is most abundant in the retina. The presence of consensus signal peptide sequences suggests that the product of the gene OPA1 is targeted to mitochondria and may exert its function in mitochondrial biogenesis and stabilization of mitochondrial membrane integrity.


Assuntos
Cromossomos Humanos Par 3 , GTP Fosfo-Hidrolases/genética , Mutação , Atrofia Óptica/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Análise Mutacional de DNA , Drosophila , Dinaminas , Éxons , Feminino , GTP Fosfo-Hidrolases/química , Genes Dominantes , Ligação Genética , Marcadores Genéticos , Humanos , Íntrons , Masculino , Dados de Sequência Molecular , Linhagem , Saccharomyces cerevisiae/genética , Salmão , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
9.
Nat Genet ; 14(3): 269-76, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8896555

RESUMO

The gene for spinocerebellar ataxia type 2 (SCA2) has been mapped to 12q24.1. A 1.1-megabase contig in the candidate region was assembled in P1 artificial chromosome and bacterial artificial chromosome clones. Using this contig, we identified a CAG trinucleotide repeat with CAA interruptions that was expanded in patients with SCA2. In contrast to other unstable trinucleotide repeats, this CAG repeat was not highly polymorphic in normal individuals. In SCA2 patients, the repeat was perfect and expanded to 36-52 repeats. The most common disease allele contained (CAG)37, one of the shortest expansions seen in a CAG expansion syndrome. The repeat occurs in the 5'-coding region of SCA2 which is a member of a novel gene family.


Assuntos
Cromossomos Humanos Par 12 , Proteínas/genética , Degenerações Espinocerebelares/genética , Repetições de Trinucleotídeos , Sequência de Aminoácidos , Ataxinas , Sequência de Bases , Mapeamento Cromossômico , DNA Complementar/isolamento & purificação , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
10.
Neurogenetics ; 13(1): 9-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22028146

RESUMO

Parkinson's disease (PD) is the most frequent neurodegenerative movement disorder and manifests at old age. While many details of its pathogenesis remain to be elucidated, in particular the protein and mitochondrial quality control during stress responses have been implicated in monogenic PD variants. Especially the mitochondrial kinase PINK1 and the ubiquitin ligase PARKIN are known to cooperate in autophagy after mitochondrial damage. As autophagy is also induced by loss of trophic signaling and PINK1 gene expression is modulated after deprivation of cytokines, we analyzed to what extent trophic signals and starvation stress regulate PINK1 and PARKIN expression. Time course experiments with serum deprivation and nutrient starvation of human SH-SY5Y neuroblastoma cells and primary mouse neurons demonstrated phasic induction of PINK1 transcript up to twofold and PARKIN transcript levels up to sixfold. The corresponding threefold starvation induction of PARKIN protein was limited by its translocation to lysosomes. Analysis of primary mouse cells from PINK1-knockout mice indicated that PARKIN induction and lysosomal translocation occurred independent of PINK1. Suppression of the PI3K-Akt-mTOR signaling by pharmacological agents modulated PARKIN expression accordingly. In conclusion, this expression survey demonstrates that PARKIN and PINK1 are coregulated during starvation and suggest a role of both PD genes in response to trophic signals and starvation stress.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Doença de Parkinson/fisiopatologia , Inanição , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Humanos , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Doença de Parkinson/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
Cerebellum ; 11(3): 749-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22198871

RESUMO

The cerebellum is one of the well-known targets of the pathological processes underlying spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Despite its pivotal role for the clinical pictures of these polyglutamine ataxias, no pathoanatomical studies of serial tissue sections through the cerebellum have been performed in SCA2 and SCA3 so far. Detailed pathoanatomical data are an important prerequisite for the identification of the initial events of the underlying disease processes of SCA2 and SCA3 and the reconstruction of its spread through the brain. In the present study, we performed a pathoanatomical investigation of serial thick tissue sections through the cerebellum of clinically diagnosed and genetically confirmed SCA2 and SCA3 patients. This study demonstrates that the cerebellar Purkinje cell layer and all four deep cerebellar nuclei consistently undergo considerable neuronal loss in SCA2 and SCA3. These cerebellar findings contribute substantially to the pathogenesis of clinical symptoms (i.e., dysarthria, intention tremor, oculomotor dysfunctions) of SCA2 and SCA3 patients and may facilitate the identification of the initial pathological alterations of the pathological processes of SCA2 and SCA3 and reconstruction of its spread through the brain.


Assuntos
Cerebelo/patologia , Degeneração Neural/patologia , Ataxias Espinocerebelares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Atrofia , Córtex Cerebelar/patologia , Núcleos Cerebelares/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/genética , Tomografia Computadorizada por Raios X , Adulto Jovem
12.
Clin Genet ; 78(2): 169-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20095980

RESUMO

Previous studies have investigated the close association that exists between CAG repeat number and the age at onset in SCA2 = spinocerebellar ataxia type 2. These studies have focused on affected individuals. To further characterize this association and estimate the risk of a carrier developing SCA2 at a particular age as a function of a specific CAG repeat size, we have analyzed a large group of 924 individuals, including 394 presymptomatic and 530 affected individuals with a CAG repeat length of 32-79 units. Using a Kaplan-Meier survival analysis, we obtained cumulative probability curves for disease manifestation at a particular age for each CAG repeat length in the 34-45 range. These curves were significantly different (p < 0.001) and showed small overlap. All these information may be very valuable in predictive-testing programs, in the planning of studies for the identification of other genetic and environmental factors as modifiers of age at onset, and in the design of clinical trials for people at enlarged risk for SCA2.


Assuntos
Ataxias Espinocerebelares/epidemiologia , Adolescente , Adulto , Idade de Início , Idoso , Criança , Pré-Escolar , Cuba/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ataxias Espinocerebelares/genética , Análise de Sobrevida , Expansão das Repetições de Trinucleotídeos/genética
13.
J Med Genet ; 46(2): 136-44, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19181907

RESUMO

INTRODUCTION: Autosomal dominant optic atrophy (ADOA) is considered as the most common form of hereditary optic neuropathy. Although genetic linkage studies point to the OPA1 locus on chromosome 3q28-q29 as by far the most common gene locus, previous screening studies-based on sequencing of the coding exons-detected OPA1 mutations in only 32-70% of ADOA patients. We therefore hypothesised that larger deletions or duplications that remained undetected in previous screening approaches may substantially contribute to the prevalence of OPA1 mutations in ADOA. METHODS: 42 independent ADOA patients were analysed for the presence of genomic rearrangements in OPA1 by means of multiplex ligation probe amplification (MLPA). Deletions or duplications were confirmed either by long distance polymerase chain reaction (PCR) and breakpoint sequencing or loss of heterozygosity analyses with flanking microsatellite markers. Patients underwent ophthalmological examination including visual acuity, colour vision testings, perimetry and funduscopy. RESULTS: We identified genomic rearrangements in 8 of 42 patients, including single exon deletions of exon 9 and exon 24, respectively, a deletion of exons 1-5, two different deletions of the complete OPA1 gene as well as a duplication of the exons 7-9, with the latter being present in three unrelated families. Patients' phenotypes were highly variable, similar to patients with point mutation in OPA1. DISCUSSION: Our findings show that gross genomic aberrations at the OPA1 gene locus are frequent in ADOA and substantially contribute to the spectrum and prevalence of OPA1 mutations in ADOA patients. They further strengthen the hypothesis that haploinsufficiency is a major pathomechanism in OPA1 associated ADOA.


Assuntos
GTP Fosfo-Hidrolases/genética , Rearranjo Gênico , Genoma Humano , Atrofia Óptica Autossômica Dominante/genética , Sequência de Bases , Visão de Cores/genética , Análise Mutacional de DNA , Éxons/genética , Deleção de Genes , Ligação Genética , Heterozigoto , Humanos , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Reação em Cadeia da Polimerase
14.
Neuropathol Appl Neurobiol ; 34(5): 479-91, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18221259

RESUMO

AIMS: The spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7) are clinically characterized by progressive and severe ataxic symptoms, dysarthria, dysphagia, oculomotor impairments, pyramidal and extrapyramidal manifestations and sensory deficits. Although recent clinical studies reported additional disease signs suggesting involvement of the brainstem auditory system, this has never been studied in detail in SCA2, SCA3 or SCA7. METHODS: We performed a detailed pathoanatomical investigation of unconventionally thick tissue sections through the auditory brainstem nuclei (that is, nucleus of the inferior colliculus, nuclei of the lateral lemniscus, superior olive, cochlear nuclei) and auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body, dorsal acoustic stria, cochlear portion of the vestibulocochlear nerve) of clinically diagnosed and genetically confirmed SCA2, SCA3 and SCA7 patients. RESULTS: Examination of unconventionally thick serial brainstem sections stained for lipofuscin pigment and Nissl material revealed a consistent and widespread involvement of the auditory brainstem nuclei in the SCA2, SCA3 and SCA7 patients studied. Serial brainstem tissue sections stained for myelin showed loss of myelinated fibres in two of the auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body) in a subset of patients. CONCLUSIONS: The involvement of the auditory brainstem system offers plausible explanations for the auditory impairments detected in some of our and other SCA2, SCA3 and SCA7 patients upon bedside examination or neurophysiological investigation. However, further clinical studies are required to resolve the striking discrepancy between the consistent involvement of the brainstem auditory system observed in this study and the comparatively low frequency of reported auditory impairments in SCA2, SCA3 and SCA7 patients.


Assuntos
Tronco Encefálico/patologia , Ataxias Espinocerebelares/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/patologia
16.
Sleep Med ; 9(6): 684-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17766179

RESUMO

OBJECTIVES: The autosomal recessive disorder PARK6 manifests as early-onset Parkinson's disease (PD) with a particularly mild progression. PARK6 is of particular scientific interest, since it is caused by loss-of-function mutations in the mitochondrial protein kinase PINK1 and may thus serve as a model for oxidative damage in PD and in other basal ganglia disorders. Sleep disturbances are very common in PD but have not yet been reported for PARK6 patients. The present study reports on sleep of a Spanish family with PARK6. Of the 5 siblings, 3 were homozygous and severely affected, and 2 were heterozygous and clinically asymptomatic. Research questions concerned possible differences in sleep recordings between homozygote and heterozygote siblings and similarities between PARK6 and sporadic PD sleep profiles. METHOD: The data from detailed clinical interviews of the patients and their bedpartners are reported and compared with polysomnographic data from second-night recordings. CONCLUSIONS: All siblings had good subjective and objective sleep quality. Restless legs syndrome and rapid eye movement (REM) sleep behaviour disorder (RBD) were not observed, suggesting that sleep disturbances are not commonly found in PARK6 patients. Good sleep quality and the absence of RBD might be a useful diagnostic guide in the differential diagnosis of sporadic PD versus PARK6.


Assuntos
Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Proteínas Quinases/genética , Transtornos do Sono-Vigília/genética , Adulto , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Fases do Sono/fisiologia , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/fisiopatologia
17.
J Neural Transm Suppl ; (70): 111-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17017517

RESUMO

Protein aggregates such as Lewy bodies have done much for the scientists in the field of neurodegenerative diseases: They have highlighted the affected cell populations and they have trapped the mutant disease protein. Instead of a good reputation, however, protein aggregates have received incriminations, because they are consistently seen at the site of crime. Reviewing the arguments, crucial evidence has become known that (a) the specific neuronal pathology precedes the appearance of protein aggregates in mouse models of disease, (b) the neurodegenerative disease in patients occurs with comparable severity when visible protein aggregates remain absent, (c) the neurotoxicity in vitro is best reproduced by oligomers, not polymers of the mutant disease protein. Is it feasible that protein aggregates are inert byproducts of the disease protein malconformation, or that they even represent beneficial cellular efforts to sequestrate the soluble toxic disease protein, together with normal or aberrant interactor proteins? Whatever the answer will be, one positive role of protein aggregates seems clear: In contrast to earlier speculations that random cytoplasmic proteins are trapped within the aggregates, scientists now believe that the composition of the Lewy body reflects the network of interactions between crucial players in disease pathogenesis, such as the PARK1, PARK2 and PARK5 protein.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Doenças do Sistema Nervoso/patologia , Neurônios/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Humanos , Corpos de Lewy/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ubiquitina-Proteína Ligases/metabolismo
18.
Brain Pathol ; 15(4): 287-95, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16389941

RESUMO

Spinocerebellar ataxia type 7 (SCA7) represents a very rare and severe autosomal dominantly inherited cerebellar ataxia (ADCA). It belongs to the group of CAG-repeat or polyglutamine diseases with its underlying molecular genetical defect on chromosome 3p12-p21.1. Here, we performed a systematic study of the neuropathology on unconventional thick serial sections of the first available brain tissue of a genetically confirmed late-onset SCA7 patient with a very short CAG-repeat expansion. Along with myelin pallor of a variety of central nervous fiber tracts, we observed i) neurodegeneration in select areas of the cerebral cortex, and ii) widespread nerve cell loss in the cerebellum, thalamus, nuclei of the basal ganglia, and brainstem. In addition, upon immunocytochemical analysis using the anti-polyglutamine antibody 1C2, immunopositive neuronal intranuclear inclusions bodies (NI) were observed in all cerebellar regions, in all parts of the cerebral cortex, and in telencephalic and brainstem nuclei, irrespective of whether they underwent neurodegeneration. These novel findings provide explanations for a variety of clinical symptoms and paraclinical findings of both our and other SCA7 patients. Finally, our immunocytochemical analysis confirms previous studies which described the presence of NI in obviously degenerated brain and retinal regions as well as in apparently well-preserved brain regions and retina of SCA7 patients.


Assuntos
Encéfalo/patologia , Ataxias Espinocerebelares/patologia , Idoso , Feminino , Humanos , Imuno-Histoquímica , Degeneração Neural/patologia , Retina/patologia , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos
19.
Ann N Y Acad Sci ; 1039: 524-7, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15827014

RESUMO

We measured in 82 spinocerebellar ataxia type 2 (SCA2) patients and in 80 controls maximal saccade velocity (MSV) and correlated it to polyglutamine expansion size and disease duration. MSV is strongly decreased in SCA2 patients and is influenced mostly by polyglutamine size.


Assuntos
Transtornos da Motilidade Ocular/fisiopatologia , Movimentos Sacádicos/fisiologia , Ataxias Espinocerebelares/diagnóstico , Adolescente , Adulto , Idade de Início , Idoso , Biomarcadores , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/análise , Fatores de Tempo
20.
Mol Neurobiol ; 52(3): 1152-1164, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25307288

RESUMO

Alpha-synuclein (SNCA) protein aggregation plays a causal role in Parkinson's disease (PD). The SNCA protein modulates neurotransmission via the SNAP receptor (SNARE) complex assembly and presynaptic vesicle trafficking. The striatal presynaptic dopamine deficit is alleviated by treatment with levodopa (L-DOPA), but postsynaptic plastic changes induced by this treatment lead to a development of involuntary movements (dyskinesia). While this process is currently modeled in rodents harboring neurotoxin-induced lesions of the nigrostriatal pathway, we have here explored the postsynaptic supersensitivity of dopamine receptor-mediated signaling in a genetic mouse model of early PD. To this end, we used mice with prion promoter-driven overexpression of A53T-SNCA in the nigrostriatal and corticostriatal projections. At a symptomatic age (18 months), mice were challenged with apomorphine (5 mg/kg s.c.) and examined using both behavioral and molecular assays. After the administration of apomorphine, A53T-transgenic mice showed more severe stereotypic and dystonic movements in comparison with wild-type controls. Molecular markers of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and dephosphorylation, and Fos messenger RNA (mRNA), were examined in striatal tissue at 30 and 100 min after apomorphine injection. At 30 min, wild-type and transgenic mice showed a similar induction of phosphorylated ERK1/2, Dusp1, and Dusp6 mRNA (two MAPK phosphatases). At the same time point, Fos mRNA was induced more strongly in mutant mice than in wild-type controls. At 100 min after apomorphine treatment, the induction of both Fos, Dusp1, and Dusp6 mRNA was significantly larger in mutant mice than wild-type controls. At this time point, apomorphine caused a reduction in phospho-ERK1/2 levels specifically in the transgenic mice. Our results document for the first time a disturbance of ERK1/2 signaling regulation associated with apomorphine-induced involuntary movements in a genetic mouse model of synucleinopathy. This mouse model will be useful to identify novel therapeutic targets that can counteract abnormal dopamine-dependent striatal plasticity during both prodromal and manifest stages of PD.


Assuntos
Apomorfina/toxicidade , Discinesias/etiologia , Locomoção/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Comportamento Estereotipado/efeitos dos fármacos , alfa-Sinucleína/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Transtornos Parkinsonianos/genética , Fosforilação/efeitos dos fármacos , Mutação Puntual , Densidade Pós-Sináptica/efeitos dos fármacos , Príons/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/fisiopatologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA