Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Chem Rev ; 121(4): 2515-2544, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33449621

RESUMO

This review gives an account on the fast expanding field of monomeric (or molecular) heptazines, at the exclusion of their various polymeric forms, often referred to as carbon nitrides. While examples of monomeric heptazines were extremely limited until the beginning of this century, the field has started expanding quickly since then, as has the number of reports on polymeric materials, though previous reviews did not separate these fields. We provide here a detailed report on the synthetic procedures for molecular heptazines. We also extensively report on the different achievements realized from these new molecules, in the fields of physical chemistry, spectroscopy, materials preparation, (photo)catalysis, and devices. After a comprehensive summary and discussion on heptazines syntheses and characteristics, we show that starting from well-defined molecules allows a versatility of approaches and a wide tunability of the expected properties. It comes out that the field of monomeric heptazines is now emerging and possibly heading toward maturity, while diverging from the one of polymeric carbon nitrides. It is likely that this area of research will quickly surge to the forefront of the search for active organic molecules, with special attention to the domains of catalysis and organic-based functional materials and devices.

2.
Phys Chem Chem Phys ; 24(29): 17770-17781, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848596

RESUMO

Control of photophysical properties is crucial for the continued development of electroluminescent devices and luminescent materials. Preparation and study of original molecules uncovers design rules towards efficient materials and devices. Here we have prepared 7 new compounds based on the popular donor-acceptor design used in thermally activated delayed fluorescence emitters. We introduce for the first time benzofuro[3,2-e]-1,2,4-triazine and benzothieno[3,2-e]-1,2,4-triazine acceptors which were connected to several common donors: phenoxazine, phenothiazine, carbazole and 3,6-di-tert-butylcarbazole. DFT calculations, and steady-state and time-resolved photophysical studies were conducted in solution and in solid states. While derivatives with azine moieties are non-emissive in any form, the compounds comprising 3,6-di-tert-butylcarbazole display TADF in all cases. More interestingly, the two derivatives substituted with a carbazole donor are TADF active when dispersed in a polymer matrix and phosphorescent at room temperature in neat films (microcrystalline form).


Assuntos
Carbazóis , Luminescência , Cristalização , Triazinas
3.
Molecules ; 27(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36235234

RESUMO

We have prepared the first example of a porphyrin linked to an heptazine photoactive antenna. The two entities, linked with an alkyl spacer, demonstrate the activity of both active moieties. While they behave electrochemically independantly, on the other hand the spectroscopy shows the existence of energy transfer between both partners.


Assuntos
Porfirinas , Eletroquímica , Compostos Heterocíclicos com 3 Anéis , Porfirinas/química , Análise Espectral , Triazinas
4.
Molecules ; 26(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34641592

RESUMO

Tetrazines with branched alkoxy substituents are liquids at ambient temperature that despite the high chromophore density retain the bright orange fluorescence that is characteristic of this exceptional fluorophore. Here, we study the photophysical properties of a series of alkoxy-tetrazines in solution and as neat liquids. We also correlate the size of the alkoxy substituents with the viscosity of the liquids. We show using time-resolved spectroscopy that intersystem crossing is an important decay pathway competing with fluorescence, and that its rate is higher for 3,6-dialkoxy derivatives than for 3-chloro-6-alkoxytetrazines, explaining the higher fluorescence quantum yields for the latter. Quantum chemical calculations suggest that the difference in rate is due to the activation energy required to distort the tetrazine core such that the nπ*S1 and the higher-lying ππ*T2 states cross, at which point the spin-orbit coupling exceeding 10 cm-1 allows for efficient intersystem crossing to occur. Femtosecond time-resolved anisotropy studies in solution allow us to measure a positive relationship between the alkoxy chain lengths and their rotational correlation times, and studies in the neat liquids show a fast decay of the anisotropy consistent with fast exciton migration in the neat liquid films.

5.
Ann Bot ; 125(5): 721-736, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31711195

RESUMO

BACKGROUND: Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. SCOPE: The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. CONCLUSIONS: Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.


Assuntos
Fosforilação Oxidativa , Plantas , Transporte de Elétrons , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico
6.
J Org Chem ; 85(5): 3407-3416, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31975598

RESUMO

A facile efficient synthetic tool, Buchwald-Hartwig cross-coupling reaction, for the functionalization of 1,2,4,5-tetrazines is presented. Important factors affecting the Buchwald-Hartwig cross-coupling reaction have been optimized. Seven new donor-acceptor tetrazine molecules (TA1-TA7) were conveniently prepared in good to high yields (61-72%). They have been subsequently engaged in the inverse electron demand Diels-Alder (iEDDA) reaction with cyclooctyne. The photophysical and electrochemical properties of the new pyridazines have been studied. Some are fluorescent acting as turn-on probes. More importantly, two pyridazines (DA3 and DA6) exhibit room-temperature phosphorescence (RTP) properties.

7.
Chemistry ; 25(10): 2457-2462, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30680814

RESUMO

A novel and unexpected convenient one-pot synthesis of 1,2,3,4-thiatriazoles has been discovered while investigating the classical tetrazine "Pinner synthesis". The synthetic route starts from commercially-available nitrile derivatives and gives good to high yields (51-80 %) with no need to isolate any thioacylating agents. The crucial impact of the solvent on the outcome of the modified "Pinner synthesis" is moreover examined and discussed. Using this new synthetic route, a novel donor-acceptor thiatriazole derivative has been prepared, which exhibits prominent thermally-activated delayed fluorescence (TADF) in both solution and film. The photoluminescence quantum yield (PLQY) in methylcyclohexane (MCH) and Zeonex (a cyclo olefin polymer) in oxygen-free conditions were determined to be 76 and 99 %, respectively. This work provides an efficient and practical synthetic approach to functionalized 1,2,3,4-thiatriazole derivatives, and will noticeably facilitate the application of 1,2,3,4-thiatriazole as an electron acceptor in organic electronics.

8.
J Org Chem ; 84(24): 16139-16146, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31718179

RESUMO

A series of organic dyes derived from s-tetrazine have been synthesized, and their photophysical and electrochemical properties are systematically investigated. Testing these compounds as photoredox catalysts in a model oxidative C-S bond cleavage of thioethers has led us to identify new classes of active s-tetrazines. Moreover, some of them can be formed in situ from commercially available 3,6-dichlorotetrazine, making this photocatalyzed C-S bond functionalization simple and highly practical.

9.
Angew Chem Int Ed Engl ; 57(37): 12057-12061, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30015385

RESUMO

A facile, efficient and metal-free synthetic approach to 3-monosubstituted unsymmetrical 1,2,4,5-tetrazines is presented. Dichloromethane (DCM) is for the first time recognized as a novel reagent in the synthetic chemistry of tetrazines. Using this novel approach 11 3-aryl/alkyl 1,2,4,5-tetrazines were prepared in excellent yields (up to 75 %). The mechanism of this new reaction, including the role of DCM in the tetrazine ring formation, has been investigated by 13 C labeling of DCM, and is also presented and discussed as well as the photophysical and electrochemical properties.

10.
Inorg Chem ; 56(14): 8423-8429, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28671830

RESUMO

A novel Zr(IV) dicarboxylate metal organic framework (MOF) built up from an s-tetrazine derived ligand was prepared. This solid, which exhibits a diamond type network, combines a good stability in water, a structural flexibility, and fluorescence properties thanks to the organic ligand. It is noteworthy that this fluorescence is quenched when exposed to electron-rich molecules in solution, such as amines or phenol, this phenomenon being associated with the adsorption of the quencher, as unambiguously proven by X-ray diffraction (XRD) analysis. Finally, the quenching efficiency is shown to be governed not only by electronic and steric factors but also by the relative polarity of the solvent, the MOF, and the quencher. This work thus suggests that it is possible to develop new MOF-based sensors presenting in a given medium (such as water) highly selective responses.

11.
Langmuir ; 32(45): 11939-11945, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27776417

RESUMO

The controlled self-assembly of precise and well-defined photochemically and electrochemically active carbohydrate-coated nanoparticles offers the exciting prospect of biocompatible catalysts for energy storage/conversion and biolabeling applications. Here an aqueous nanoparticle system has been developed with a versatile outer layer for host-guest molecule encapsulation via ß-cyclodextrin inclusion complexes. A ß-cyclodextrin-modified polystyrene polymer was first obtained by copper nanopowder click chemistry. The glycopolymer enables self-assembly and controlled encapsulation of tetrazine-naphthalimide, as a model redox-active agent, into nanoparticles via nanoprecipitation. Cyclodextrin host-guest interactions permit encapsulation and internanoparticle cross-linking for the formation of fluorescent compound and clustered self-assemblies with chemically reversible electroactivity in aqueous solution. Light scattering experiments revealed stable particles with hydrodynamic diameters of 138 and 654 nm for nanoparticles prepared with tetrazine, of which 95% of the nanoparticles represent the smaller objects by number. Dynamic light scattering revealed differences as a function of preparation method in terms of size, 3-month stability, polydispersity, radius of gyration, and shape factor. Individual self-assemblies were visualized by atomic force microscopy and fluorescence microscopy and monitored in real-time by nanoparticle tracking analysis. UV-vis and fluorescence spectra provided insight into the optical properties and critical evidence for host-guest encapsulation as evidenced by solvachromatism and enhanced tetrazine uptake. Cyclic voltammetry was used to investigate the electrochemical properties and provided further support for encapsulation and an estimate of the tetrazine loading capacity in tandem with light scattering data.

12.
J Fluoresc ; 26(4): 1349-56, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27240694

RESUMO

Following the case of tetrazines substituted with perfluorinated alkyl chains, separated by two methylene groups from the tetrazine core, a new series of analogous tetrazines, but featuring only one methylene group between the fluorescent core and the perfluorinated chain, have been synthesized, and their photo-physical properties investigated. Their fluorescence quantum yields in acetonitrile are in same range than chloroalkoxytetrazines, which make them interesting candidates for light emission. Surprisingly, the quantum yields are lower with one methylene group, rather than two methylene groups separating the fluorinated chain from the emitting core, in the case of unsymmetrical compounds, while they are superior in the case of symmetrical ones. This unusual observation is discussed in the article.

13.
Molecules ; 21(7)2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27399669

RESUMO

Investigating the stability and evaluating the quality of the CH3NH3PbI3 perovskite structures is quite critical both to the design and fabrication of high-performance perovskite devices and to fundamental studies of the photophysics of the excitons. In particular, it is known that, under ambient conditions, CH3NH3PbI3 degrades producing some PbI2. We show here that low temperature Photoluminescence (PL) spectroscopy is a powerful tool to detect PbI2 traces in hybrid perovskite layers and single crystals. Because PL spectroscopy is a signal detection method on a black background, small PbI2 traces can be detected, when other methods currently used at room temperature fail. Our study highlights the extremely high stability of the single crystals compared to the thin layers and defects and grain boundaries are thought to play an important role in the degradation mechanism.


Assuntos
Compostos de Cálcio/análise , Óxidos/análise , Espectrometria de Fluorescência/métodos , Titânio/análise , Compostos de Cálcio/química , Temperatura Baixa , Luminescência , Medições Luminescentes , Óxidos/química , Espectrometria de Fluorescência/instrumentação , Titânio/química
14.
Chemistry ; 21(5): 2230-40, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25476159

RESUMO

The synthesis, photophysical and electrochemical properties as well as theoretical calculation studies of a newly designed triphenylamine derivative are described. This original compound displays one neutral form, three oxidized forms, and two protonated forms with distinct photophysical characteristics. The interplay of the emission with the protonation or the redox state (electrofluorochromism) has been explored and an on-off-on-off fluorescence switching was observed in the case of oxidation and an on-on-off fluorescence switching in the case of protonation.

15.
Chemphyschem ; 16(17): 3695-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26534906

RESUMO

The photophysical and electrochemical properties of tetrazines substituted by linear 2,3-naphtalimide antennas and/or adamantane groups specifically dedicated to host-guest interactions with cyclodextrins are studied both in organic and aqueous media. In acetonitrile solvent, the reduction potential of tetrazine leading to the anion radical is shifted, depending on the electron-withdrawing power of the substituent of the tetrazines. Due to the hydrophobic character of these compounds, their solubilization in aqueous solution is achieved successively in presence of either ß-cyclodextrins or gold nanoparticules modified by ß-cyclodextrins. We demonstrate that the formation of the inclusion compound tetrazine-cyclodextrin allows the solubilization of the tetrazines in aqueous solution. The supramolecular assemblies obtained in water retain tetrazine's emission properties, yielding a yellow fluorescence.

16.
Angew Chem Int Ed Engl ; 51(34): 8534-7, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22811392

RESUMO

Into the white: Encapsulation of a naphthalimide moiety in the core of silica nanoparticles afforded nanospheres with a strong green excimeric emission. Together with the blue emission of the monomeric naphthalimide and the yellow fluorescence of the tetrazine acceptor on the outer shell, the added contributions provide intense white fluorescence upon 330 nm UV excitation.

17.
ACS Macro Lett ; 11(1): 135-139, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574794

RESUMO

The fluorescent organic 2,5,8-tris((adamantan-1-yl)-methoxy)-heptazine (HTZ-Ad) was solubilized in water by inclusion of adamantane groups into free ß-cyclodextrins or a cyclodextrin shell of glyconanoparticles. These glyconanoparticles with average diameters between 40 and 60 nm result from the self-assembly of polystyrene-block-ß-cyclodextrin copolymers. Under UV irradiation at 365 nm, the modified nanoparticles exhibit fluorescence emission in aqueous media as well as in their adsorbed state. This constitutes the first spectroscopic characterization of a trialkoxyheptazine in aqueous medium. The specific binding of the glyconanoparticles to a surface was achieved via host-guest interactions with an electrochemically generated poly(pyrrole-adamantane) film. An interdigitated microelectrode modified with poly(pyrrole-adamantane) film and glyconanoparticles was incubated in HTZ-Ad, resulting in a substrate with spatially controlled fluorescence. The same modified electrode was incubated with an aqueous suspension of glyconanoparticles previously functionalized by HTZ-Ad, resulting in a fluorescent 3D assembly.


Assuntos
Adamantano , Ciclodextrinas , Adamantano/química , Ciclodextrinas/química , Fluorescência , Pirróis , Água
18.
J Phys Chem B ; 126(14): 2740-2753, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35353524

RESUMO

The photophysical and electrochemical properties of a new class of fluorinated benzonitrile compounds substituted with mixed phenoxazine and carbazole units have been investigated. When absorbing in a large range of the UV-vis spectrum due to both localized and charge-transfer absorptions, these compounds show dual broad emission in solution and intense emission in PMMA films, with photoluminescence quantum yields changing from a few percent in solution to 18% in a more rigid environment. The compounds also exhibit thermally activated delayed fluorescence demonstrated by the role of oxygen in the quenching of delayed fluorescence and by time-resolved luminescence studies, with an efficiency directly related to the number of phenoxazine substituents. Electrochemistry reveals dramatic changes in the reduction mechanisms according to the number of remaining fluorine atoms on the benzonitrile core. All these results demonstrate how it is possible to tune the photophysical and electrochemical properties of easily synthesizable derivatives by controlling the nature and relative number of the substituents on a simple aromatic platform.

19.
Chemistry ; 17(46): 13078-86, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22167889

RESUMO

The first synthesis of 4,5-bis-(dimethylamino)-substituted imidazolium compounds was developed, which is based on the reaction of a 1,2-diamino-1,2-bis(phosphonio)ethene with lithiated formamidines. This represents the first application of this class of ethene derivatives for the preparation of heterocycles. These N-heterocyclic carbene (NHC) precursors show a remarkably reduced basicity and nucleophilicity of their NMe2 groups, which is due to the strong anomeric interactions of the latter with the imidazolium core. According to DFT calculations, these NHCs are capable of self-umpolung if sufficiently strong acceptor substituents are introduced at the carbene center. To test the self-umpolung capabilities of the NHCs, various substituents were attached to the carbene center and the obtained compounds were characterized by single-crystal X-ray analysis as well as quantum chemical computations. Strong acceptor substituents are required to induce self-umpolung, such as in the phosphonio-substituted derivative, for which partial self-umpolung was found. The N,N'-bis(4-dimethylaminophenyl)-substituted imidazolium compound represents a special case, as it incorporates as much as three two-step redox systems within the NHC framework. This will probably result in a high electronic flexibility of the corresponding nucleophilic carbenes, especially when they serve as ligands in transition metal complexes.

20.
Mater Horiz ; 8(5): 1547-1560, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846463

RESUMO

Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA