Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Appl ; 27(1): 37-55, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052494

RESUMO

Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly related to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km2 ) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. The results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.


Assuntos
Biota , Peixes , Fraturamento Hidráulico , Indústria de Petróleo e Gás , Rios , Movimentos da Água , Animais , Região dos Apalaches , Hidrologia , Gás Natural
2.
Sci Total Environ ; 580: 1381-1388, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28040219

RESUMO

Geospatial models are commonly used to quantify sediment contributions at the watershed scale. However, the sensitivity of these models to variation in hydrological and geomorphological features, in particular to land use and topography data, remains uncertain. Here, we assessed the performance of one such model, the InVEST sediment delivery model, for six sites comprising a total of 28 watersheds varying in area (6-13,500km2), climate (tropical, subtropical, mediterranean), topography, and land use/land cover. For each site, we compared uncalibrated and calibrated model predictions with observations and alternative models. We then performed correlation analyses between model outputs and watershed characteristics, followed by sensitivity analyses on the digital elevation model (DEM) resolution. Model performance varied across sites (overall r2=0.47), but estimates of the magnitude of specific sediment export were as or more accurate than global models. We found significant correlations between metrics of sediment delivery and watershed characteristics, including erosivity, suggesting that empirical relationships may ultimately be developed for ungauged watersheds. Model sensitivity to DEM resolution varied across and within sites, but did not correlate with other observed watershed variables. These results were corroborated by sensitivity analyses performed on synthetic watersheds ranging in mean slope and DEM resolution. Our study provides modelers using InVEST or similar geospatial sediment models with practical insights into model behavior and structural uncertainty: first, comparison of model predictions across regions is possible when environmental conditions differ significantly; second, local knowledge on the sediment budget is needed for calibration; and third, model outputs often show significant sensitivity to DEM resolution.

3.
R Soc Open Sci ; 3(9): 160170, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27703685

RESUMO

Water management that alters riverine ecosystem processes has strongly influenced deltas and the people who depend on them, but a full accounting of the trade-offs is still emerging. Using palaeoecological data, we document a surprising biogeochemical consequence of water management in the Colorado River basin. Complete allocation and consumptive use of the river's flow has altered the downstream estuarine ecosystem, including the abundance and composition of the mollusc community, an important component in estuarine carbon cycling. In particular, population declines in the endemic Colorado delta clam, Mulinia coloradoensis, from 50--125 individuals m-2 in the pre-dam era to three individuals m-2 today, have likely resulted in a reduction, on the order of 5900-15 000 t C yr-1 (4.1-10.6 mol C m-2 yr-1), in the net carbon emissions associated with molluscs. Although this reduction is large within the estuarine system, it is small in comparison with annual global carbon emissions. Nonetheless, this finding highlights the need for further research into the effects of dams, diversions and reservoirs on the biogeochemistry of deltas and estuaries worldwide, underscoring a present need for integrated water and carbon planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA