Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 208(2): 142-154, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163754

RESUMO

Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.


Assuntos
Asma , Hipersensibilidade , Microbiota , Feminino , Masculino , Humanos , Transcriptoma , Sons Respiratórios/genética , Asma/genética , Microbiota/genética
2.
Brain Behav Immun ; 111: 249-258, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146653

RESUMO

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.


Assuntos
Asma , Interleucina-6 , Humanos , Asma/complicações , Ansiedade , Comorbidade , Inflamação/complicações , Biomarcadores
3.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34737220

RESUMO

RATIONALE: Asthma phenotyping requires novel biomarker discovery. OBJECTIVES: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). METHODS: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. RESULTS: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-ß and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. CONCLUSIONS: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA.


Assuntos
Asma , Qualidade de Vida , Proteínas Sanguíneas , Humanos , Inflamação/metabolismo , Proteômica , Índice de Gravidade de Doença , Esteroides/uso terapêutico
4.
Brief Bioinform ; 21(1): 62-72, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30289443

RESUMO

The use of signalling pathway hypergraphs represented as process description diagrams is steadily becoming more pervasive in the field of biology. This makes ever more evident the necessity for an effective automated layout that can replicate high-quality manually drawn diagrams. The complexity and idiosyncrasies of these diagrams, as well as the specific tasks the end users perform with them, mean that a layout must meet many requirements beyond the simple metrics used in existing automated computational approaches. In this paper we outline these requirements, examine existing ones and describe new ones. We demonstrate state-of-the-art layout techniques enhanced with novel functionalities to meet part of the requirements. For comparatively small signalling pathways our enhanced algorithm provides results close to manually drawn layouts. In addition, we suggest technical approaches that may be suited for fulfilling the identified requirements currently not covered.

5.
Bioinformatics ; 37(10): 1475-1477, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33010165

RESUMO

MOTIVATION: Visualization of cellular processes and pathways is a key recurring requirement for effective biological data analysis. There is a considerable need for sophisticated web-based pathway viewers and editors operating with widely accepted standard formats, using the latest visualization techniques and libraries. RESULTS: We developed a web-based tool named Newt for viewing, constructing and analyzing biological maps in standard formats such as SBGN, SBML and SIF. AVAILABILITY AND IMPLEMENTATION: Newt's source code is publicly available on GitHub and freely distributed under the GNU LGPL. Ample documentation on Newt can be found on http://newteditor.org and on YouTube.


Assuntos
Software , Biologia de Sistemas , Animais , Internet , Salamandridae , Transdução de Sinais
6.
Brief Bioinform ; 20(2): 609-623, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29684165

RESUMO

Large amounts of data emerging from experiments in molecular medicine are leading to the identification of molecular signatures associated with disease subtypes. The contextualization of these patterns is important for obtaining mechanistic insight into the aberrant processes associated with a disease, and this typically involves the integration of multiple heterogeneous types of data. In this review, we discuss knowledge representations that can be useful to explore the biological context of molecular signatures, in particular three main approaches, namely, pathway mapping approaches, molecular network centric approaches and approaches that represent biological statements as knowledge graphs. We discuss the utility of each of these paradigms, illustrate how they can be leveraged with selected practical examples and identify ongoing challenges for this field of research.


Assuntos
Biologia Computacional , Medicina Molecular , Humanos , Medicina de Precisão
7.
Brief Bioinform ; 20(2): 659-670, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-29688273

RESUMO

The Disease Maps Project builds on a network of scientific and clinical groups that exchange best practices, share information and develop systems biomedicine tools. The project aims for an integrated, highly curated and user-friendly platform for disease-related knowledge. The primary focus of disease maps is on interconnected signaling, metabolic and gene regulatory network pathways represented in standard formats. The involvement of domain experts ensures that the key disease hallmarks are covered and relevant, up-to-date knowledge is adequately represented. Expert-curated and computer readable, disease maps may serve as a compendium of knowledge, allow for data-supported hypothesis generation or serve as a scaffold for the generation of predictive mathematical models. This article summarizes the 2nd Disease Maps Community meeting, highlighting its important topics and outcomes. We outline milestones on the roadmap for the future development of disease maps, including creating and maintaining standardized disease maps; sharing parts of maps that encode common human disease mechanisms; providing technical solutions for complexity management of maps; and Web tools for in-depth exploration of such maps. A dedicated discussion was focused on mathematical modeling approaches, as one of the main goals of disease map development is the generation of mathematically interpretable representations to predict disease comorbidity or drug response and to suggest drug repositioning, altogether supporting clinical decisions.


Assuntos
Redes Reguladoras de Genes , Predisposição Genética para Doença , Biologia Computacional , Humanos , Modelos Estatísticos , Pesquisa Translacional Biomédica
8.
Allergy ; 75(2): 370-380, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31506971

RESUMO

BACKGROUND: Whether the clinical or pathophysiologic significance of the "treatable trait" high blood eosinophil count in COPD is the same as for asthma remains controversial. We sought to determine the relationship between the blood eosinophil count, clinical characteristics and gene expression from bronchial brushings in COPD and asthma. METHODS: Subjects were recruited into a COPD (emphysema versus airway disease [EvA]) or asthma cohort (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes, U-BIOPRED). We determined gene expression using RNAseq in EvA (n = 283) and Affymetrix microarrays in U-BIOPRED (n = 85). We ran linear regression analysis of the bronchial brushings transcriptional signal versus blood eosinophil counts as well as differential expression using a blood eosinophil > 200 cells/µL as a cut-off. The false discovery rate was controlled at 1% (with continuous values) and 5% (with dichotomized values). RESULTS: There were no differences in age, gender, lung function, exercise capacity and quantitative computed tomography between eosinophilic versus noneosinophilic COPD cases. Total serum IgE was increased in eosinophilic asthma and COPD. In EvA, there were 12 genes with a statistically significant positive association with the linear blood eosinophil count, whereas in U-BIOPRED, 1197 genes showed significant associations (266 positive and 931 negative). The transcriptome showed little overlap between genes and pathways associated with blood eosinophil counts in asthma versus COPD. Only CST1 was common to eosinophilic asthma and COPD and was replicated in independent cohorts. CONCLUSION: Despite shared "treatable traits" between asthma and COPD, the molecular mechanisms underlying these clinical entities are predominately different.


Assuntos
Asma/genética , Asma/imunologia , Eosinófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Mucosa Respiratória/imunologia , Transcriptoma , Idoso , Asma/sangue , Biomarcadores/sangue , Feminino , Humanos , Imunoglobulina E/sangue , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/sangue , RNA-Seq , Células Th2/imunologia
9.
J Allergy Clin Immunol ; 144(5): 1198-1213, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30998987

RESUMO

BACKGROUND: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required. OBJECTIVE: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity. METHODS: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17-high and IL-13-high asthma phenotypes. RESULTS: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17-high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and ß-defensin. CONCLUSION: The IL-17-high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.


Assuntos
Asma/imunologia , Brônquios/patologia , Células Epiteliais/metabolismo , Interleucina-17/metabolismo , Neutrófilos/imunologia , Psoríase/imunologia , Adulto , Biomarcadores/metabolismo , Estudos de Coortes , Células Epiteliais/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Interleucina-13/metabolismo , Masculino , Fenótipo , Transdução de Sinais , Transcriptoma , Regulação para Cima
10.
J Allergy Clin Immunol ; 144(1): 70-82, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30928653

RESUMO

BACKGROUND: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. OBJECTIVE: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. METHODS: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. RESULTS: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. CONCLUSION: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies.


Assuntos
Asma/metabolismo , Proteoma , Escarro/metabolismo , Adulto , Idoso , Asma/imunologia , Asma/fisiopatologia , Biomarcadores/metabolismo , Eosinofilia/imunologia , Eosinofilia/metabolismo , Eosinofilia/fisiopatologia , Eosinófilos/imunologia , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Fenótipo , Proteômica , Adulto Jovem
11.
J Allergy Clin Immunol ; 143(5): 1811-1820.e7, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30529449

RESUMO

BACKGROUND: Severe asthma is a heterogeneous condition, as shown by independent cluster analyses based on demographic, clinical, and inflammatory characteristics. A next step is to identify molecularly driven phenotypes using "omics" technologies. Molecular fingerprints of exhaled breath are associated with inflammation and can qualify as noninvasive assessment of severe asthma phenotypes. OBJECTIVES: We aimed (1) to identify severe asthma phenotypes using exhaled metabolomic fingerprints obtained from a composite of electronic noses (eNoses) and (2) to assess the stability of eNose-derived phenotypes in relation to within-patient clinical and inflammatory changes. METHODS: In this longitudinal multicenter study exhaled breath samples were taken from an unselected subset of adults with severe asthma from the U-BIOPRED cohort. Exhaled metabolites were analyzed centrally by using an assembly of eNoses. Unsupervised Ward clustering enhanced by similarity profile analysis together with K-means clustering was performed. For internal validation, partitioning around medoids and topological data analysis were applied. Samples at 12 to 18 months of prospective follow-up were used to assess longitudinal within-patient stability. RESULTS: Data were available for 78 subjects (age, 55 years [interquartile range, 45-64 years]; 41% male). Three eNose-driven clusters (n = 26/33/19) were revealed, showing differences in circulating eosinophil (P = .045) and neutrophil (P = .017) percentages and ratios of patients using oral corticosteroids (P = .035). Longitudinal within-patient cluster stability was associated with changes in sputum eosinophil percentages (P = .045). CONCLUSIONS: We have identified and followed up exhaled molecular phenotypes of severe asthma, which were associated with changing inflammatory profile and oral steroid use. This suggests that breath analysis can contribute to the management of severe asthma.


Assuntos
Asma/diagnóstico , Nariz Eletrônico , Eosinófilos/patologia , Inflamação/diagnóstico , Neutrófilos/patologia , Adulto , Testes Respiratórios , Análise por Conglomerados , Estudos de Coortes , Progressão da Doença , Expiração , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença
12.
Eur Respir J ; 53(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578390

RESUMO

Type-2 (T2) immune responses in airway epithelial cells (AECs) classifies mild-moderate asthma into a T2-high phenotype. We examined whether currently available clinical biomarkers can predict AEC-defined T2-high phenotype within the U-BIOPRED cohort.The transcriptomic profile of AECs obtained from brushings of 103 patients with asthma and 44 healthy controls was obtained and gene set variation analysis used to determine the relative expression score of T2 asthma using a signature from interleukin (IL)-13-exposed AECs.37% of asthmatics (45% nonsmoking severe asthma, n=49; 33% of smoking or ex-smoking severe asthma, n=18; and 28% mild-moderate asthma, n=36) were T2-high using AEC gene expression. They were more symptomatic with higher exhaled nitric oxide fraction (F eNO) and blood and sputum eosinophils, but not serum IgE or periostin. Sputum eosinophilia correlated best with the T2-high signature. F eNO (≥30 ppb) and blood eosinophils (≥300 cells·µL-1) gave a moderate prediction of T2-high asthma. Sputum IL-4, IL-5 and IL-13 protein levels did not correlate with gene expression.T2-high severe asthma can be predicted to some extent from raised levels of F eNO, blood and sputum eosinophil counts, but serum IgE or serum periostin were poor predictors. Better bedside biomarkers are needed to detect T2-high.


Assuntos
Asma/sangue , Moléculas de Adesão Celular/sangue , Eosinofilia/diagnóstico , Escarro/química , Adulto , Biomarcadores , Testes Respiratórios , Estudos de Casos e Controles , Eosinofilia/sangue , Eosinófilos/citologia , Feminino , Humanos , Imunoglobulina E/sangue , Interleucinas/análise , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/análise , Fenótipo , Estudos Prospectivos , Fumar/efeitos adversos
13.
Allergy ; 74(6): 1102-1112, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30667542

RESUMO

BACKGROUND: Eosinophils play an important role in the pathophysiology of asthma being implicated in airway epithelial damage and airway wall remodeling. We determined the genes associated with airway remodeling and eosinophilic inflammation in patients with asthma. METHODS: We analyzed the transcriptomic data from bronchial biopsies of 81 patients with moderate-to-severe asthma of the U-BIOPRED cohort. Expression profiling was performed using Affymetrix arrays on total RNA. Transcription binding site analysis used the PRIMA algorithm. Localization of proteins was by immunohistochemistry. RESULTS: Using stringent false discovery rate analysis, MMP-10 and MET were significantly overexpressed in biopsies with high mucosal eosinophils (HE) compared to low mucosal eosinophil (LE) numbers. Immunohistochemical analysis confirmed increased expression of MMP-10 and MET in bronchial epithelial cells and in subepithelial inflammatory and resident cells in asthmatic biopsies. Using less-stringent conditions (raw P-value < 0.05, log2 fold change > 0.5), we defined a 73-gene set characteristic of the HE compared to the LE group. Thirty-three of 73 genes drove the pathway annotation that included extracellular matrix (ECM) organization, mast cell activation, CC-chemokine receptor binding, circulating immunoglobulin complex, serine protease inhibitors, and microtubule bundle formation pathways. Genes including MET and MMP10 involved in ECM organization correlated positively with submucosal thickness. Transcription factor binding site analysis identified two transcription factors, ETS-1 and SOX family proteins, that showed positive correlation with MMP10 and MET expression. CONCLUSION: Pathways of airway remodeling and cellular inflammation are associated with submucosal eosinophilia. MET and MMP-10 likely play an important role in these processes.


Assuntos
Remodelação das Vias Aéreas/genética , Asma/imunologia , Eosinófilos/imunologia , Metaloproteinase 10 da Matriz/genética , Metaloproteinase 10 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Adulto , Asma/patologia , Biópsia , Brônquios/patologia , Estudos de Coortes , Eosinofilia/imunologia , Matriz Extracelular/genética , Feminino , Humanos , Imuno-Histoquímica , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Proteína Proto-Oncogênica c-ets-1/metabolismo , Fatores de Transcrição SOX/metabolismo , Transcriptoma
14.
J Allergy Clin Immunol ; 141(2): 560-570, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28528200

RESUMO

BACKGROUND: Sputum analysis in asthmatic patients is used to define airway inflammatory processes and might guide therapy. OBJECTIVE: We sought to determine differential gene and protein expression in sputum samples from patients with severe asthma (SA) compared with nonsmoking patients with mild/moderate asthma. METHODS: Induced sputum was obtained from nonsmoking patients with SA, smokers/ex-smokers with severe asthma, nonsmoking patients with mild/moderate asthma (MMAs), and healthy nonsmoking control subjects. Differential cell counts, microarray analysis of cell pellets, and SOMAscan analysis of sputum analytes were performed. CRID3 was used to inhibit the inflammasome in a mouse model of SA. RESULTS: Eosinophilic and mixed neutrophilic/eosinophilic inflammation were more prevalent in patients with SA compared with MMAs. Forty-two genes probes were upregulated (>2-fold) in nonsmoking patients with severe asthma compared with MMAs, including IL-1 receptor (IL-1R) family and nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NRLP3) inflammasome members (false discovery rate < 0.05). The inflammasome proteins nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 1 (NLRP1), NLRP3, and nucleotide-binding oligomerization domain (NOD)-like receptor C4 (NLRC4) were associated with neutrophilic asthma and with sputum IL-1ß protein levels, whereas eosinophilic asthma was associated with an IL-13-induced TH2 signature and IL-1 receptor-like 1 (IL1RL1) mRNA expression. These differences were sputum specific because no activation of NLRP3 or enrichment of IL-1R family genes in bronchial brushings or biopsy specimens in patients with SA was observed. Expression of NLRP3 and of the IL-1R family genes was validated in the Airway Disease Endotyping for Personalized Therapeutics cohort. Inflammasome inhibition using CRID3 prevented airway hyperresponsiveness and airway inflammation (both neutrophilia and eosinophilia) in a mouse model of severe allergic asthma. CONCLUSION: IL1RL1 gene expression is associated with eosinophilic SA, whereas NLRP3 inflammasome expression is highest in patients with neutrophilic SA. TH2-driven eosinophilic inflammation and neutrophil-associated inflammasome activation might represent interacting pathways in patients with SA.


Assuntos
Asma/imunologia , Perfilação da Expressão Gênica , Receptores de Interleucina-1/imunologia , Escarro/imunologia , Regulação para Cima/imunologia , Adulto , Animais , Asma/patologia , Eosinófilos/imunologia , Eosinófilos/patologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/patologia , Células Th2/imunologia , Células Th2/patologia
15.
J Allergy Clin Immunol ; 141(4): 1280-1290, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28756296

RESUMO

BACKGROUND: Adult-onset severe asthma is characterized by highly symptomatic disease despite high-intensity asthma treatments. Understanding of the underlying pathways of this heterogeneous disease is needed for the development of targeted treatments. Gene set variation analysis is a statistical technique used to identify gene profiles in heterogeneous samples. OBJECTIVE: We sought to identify gene profiles associated with adult-onset severe asthma. METHODS: This was a cross-sectional, observational study in which adult patients with adult-onset of asthma (defined as starting at age ≥18 years) as compared with childhood-onset severe asthma (<18 years) were selected from the U-BIOPRED cohort. Gene expression was assessed on the total RNA of induced sputum (n = 83), nasal brushings (n = 41), and endobronchial brushings (n = 65) and biopsies (n = 47) (Affymetrix HT HG-U133+ PM). Gene set variation analysis was used to identify differentially enriched predefined gene signatures of leukocyte lineage, inflammatory and induced lung injury pathways. RESULTS: Significant differentially enriched gene signatures in patients with adult-onset as compared with childhood-onset severe asthma were identified in nasal brushings (5 signatures), sputum (3 signatures), and endobronchial brushings (6 signatures). Signatures associated with eosinophilic airway inflammation, mast cells, and group 3 innate lymphoid cells were more enriched in adult-onset severe asthma, whereas signatures associated with induced lung injury were less enriched in adult-onset severe asthma. CONCLUSIONS: Adult-onset severe asthma is characterized by inflammatory pathways involving eosinophils, mast cells, and group 3 innate lymphoid cells. These pathways could represent useful targets for the treatment of adult-onset severe asthma.


Assuntos
Asma/genética , Transcriptoma/imunologia , Adulto , Idade de Início , Asma/imunologia , Estudos Transversais , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Índice de Gravidade de Doença
16.
J Proteome Res ; 17(6): 2072-2091, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29737851

RESUMO

Analysis of induced sputum supernatant is a minimally invasive approach to study the epithelial lining fluid and, thereby, provide insight into normal lung biology and the pathobiology of lung diseases. We present here a novel proteomics approach to sputum analysis developed within the U-BIOPRED (unbiased biomarkers predictive of respiratory disease outcomes) international project. We present practical and analytical techniques to optimize the detection of robust biomarkers in proteomic studies. The normal sputum proteome was derived using data-independent HDMSE applied to 40 healthy nonsmoking participants, which provides an essential baseline from which to compare modulation of protein expression in respiratory diseases. The "core" sputum proteome (proteins detected in ≥40% of participants) was composed of 284 proteins, and the extended proteome (proteins detected in ≥3 participants) contained 1666 proteins. Quality control procedures were developed to optimize the accuracy and consistency of measurement of sputum proteins and analyze the distribution of sputum proteins in the healthy population. The analysis showed that quantitation of proteins by HDMSE is influenced by several factors, with some proteins being measured in all participants' samples and with low measurement variance between samples from the same patient. The measurement of some proteins is highly variable between repeat analyses, susceptible to sample processing effects, or difficult to accurately quantify by mass spectrometry. Other proteins show high interindividual variance. We also highlight that the sputum proteome of healthy individuals is related to sputum neutrophil levels, but not gender or allergic sensitization. We illustrate the importance of design and interpretation of disease biomarker studies considering such protein population and technical measurement variance.


Assuntos
Proteoma/química , Proteômica/métodos , Escarro/química , Análise de Variância , Biomarcadores/análise , Conjuntos de Dados como Assunto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas , Proteínas/análise , Reprodutibilidade dos Testes
17.
Eur Respir J ; 51(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650557

RESUMO

Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes.The U-BIOPRED cohort of severe asthma patients, containing current-smokers (CSA), ex-smokers (ESA), nonsmokers and healthy nonsmokers was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed.Colony-stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants, with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene set variation analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated.Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level, with CSA patients having increased CSF2 expression and ESA patients showing sustained loss of epithelial barrier processes.


Assuntos
Asma/metabolismo , Ex-Fumantes , Proteômica/métodos , Fumantes , Escarro/metabolismo , Adulto , Idoso , Asma/complicações , Biomarcadores/metabolismo , Brônquios/patologia , Eosinófilos/metabolismo , Expiração , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Fumar/metabolismo , Espirometria
18.
Bioinformatics ; 33(7): 1096-1098, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993779

RESUMO

Summary: The goal of this work is to offer a computational framework for exploring data from the Recon2 human metabolic reconstruction model. Advanced user access features have been developed using the Neo4j graph database technology and this paper describes key features such as efficient management of the network data, examples of the network querying for addressing particular tasks, and how query results are converted back to the Systems Biology Markup Language (SBML) standard format. The Neo4j-based metabolic framework facilitates exploration of highly connected and comprehensive human metabolic data and identification of metabolic subnetworks of interest. A Java-based parser component has been developed to convert query results (available in the JSON format) into SBML and SIF formats in order to facilitate further results exploration, enhancement or network sharing. Availability and Implementation: The Neo4j-based metabolic framework is freely available from: https://diseaseknowledgebase.etriks.org/metabolic/browser/ . The java code files developed for this work are available from the following url: https://github.com/ibalaur/MetabolicFramework . Contact: ibalaur@eisbm.org. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Redes e Vias Metabólicas , Software , Gráficos por Computador , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Genoma , Humanos , Redes e Vias Metabólicas/genética , Modelos Biológicos
19.
Am J Respir Crit Care Med ; 195(10): 1311-1320, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27925796

RESUMO

RATIONALE: Stratification of asthma at the molecular level, especially using accessible biospecimens, could greatly enable patient selection for targeted therapy. OBJECTIVES: To determine the value of blood analysis to identify transcriptional differences between clinically defined asthma and nonasthma groups, identify potential patient subgroups based on gene expression, and explore biological pathways associated with identified differences. METHODS: Transcriptomic profiles were generated by microarray analysis of blood from 610 patients with asthma and control participants in the U-BIOPRED (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes) study. Differentially expressed genes (DEGs) were identified by analysis of variance, including covariates for RNA quality, sex, and clinical site, and Ingenuity Pathway Analysis was applied. Patient subgroups based on DEGs were created by hierarchical clustering and topological data analysis. MEASUREMENTS AND MAIN RESULTS: A total of 1,693 genes were differentially expressed between patients with severe asthma and participants without asthma. The differences from participants without asthma in the nonsmoking severe asthma and mild/moderate asthma subgroups were significantly related (r = 0.76), with a larger effect size in the severe asthma group. The majority of, but not all, differences were explained by differences in circulating immune cell populations. Pathway analysis showed an increase in chemotaxis, migration, and myeloid cell trafficking in patients with severe asthma, decreased B-lymphocyte development and hematopoietic progenitor cells, and lymphoid organ hypoplasia. Cluster analysis of DEGs led to the creation of subgroups among the patients with severe asthma who differed in molecular responses to oral corticosteroids. CONCLUSIONS: Blood gene expression differences between clinically defined subgroups of patients with asthma and individuals without asthma, as well as subgroups of patients with severe asthma defined by transcript profiles, show the value of blood analysis in stratifying patients with asthma and identifying molecular pathways for further study. Clinical trial registered with www.clinicaltrials.gov (NCT01982162).


Assuntos
Corticosteroides/uso terapêutico , Asma/sangue , Asma/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Corticosteroides/sangue , Adulto , Análise por Conglomerados , Estudos de Coortes , Europa (Continente) , Feminino , Humanos , Masculino , Análise em Microsséries/estatística & dados numéricos , Pessoa de Meia-Idade , Estudos Prospectivos , Índice de Gravidade de Doença , Transcriptoma/efeitos dos fármacos
20.
Am J Respir Crit Care Med ; 195(4): 443-455, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27580351

RESUMO

RATIONALE: Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. OBJECTIVES: Using transcriptomic profiling of airway tissues, we sought to define the molecular phenotypes of severe asthma. METHODS: The transcriptome derived from bronchial biopsies and epithelial brushings of 107 subjects with moderate to severe asthma were annotated by gene set variation analysis using 42 gene signatures relevant to asthma, inflammation, and immune function. Topological data analysis of clinical and histologic data was performed to derive clusters, and the nearest shrunken centroid algorithm was used for signature refinement. MEASUREMENTS AND MAIN RESULTS: Nine gene set variation analysis signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper cell type 2 cytokines and lack of corticosteroid response (group 1 and group 3). Group 1 had the highest submucosal eosinophils, as well as high fractional exhaled nitric oxide levels, exacerbation rates, and oral corticosteroid use, whereas group 3 patients showed the highest levels of sputum eosinophils and had a high body mass index. In contrast, group 2 and group 4 patients had an 86% and 64% probability, respectively, of having noneosinophilic inflammation. Using machine learning tools, we describe an inference scheme using the currently available inflammatory biomarkers sputum eosinophilia and fractional exhaled nitric oxide levels, along with oral corticosteroid use, that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity. CONCLUSIONS: This analysis demonstrates the usefulness of a transcriptomics-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target T-helper cell type 2-mediated inflammation and/or corticosteroid insensitivity.


Assuntos
Corticosteroides/imunologia , Asma/genética , Brônquios/patologia , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Adulto , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Biomarcadores/análise , Biópsia , Testes Respiratórios , Broncoscopia/instrumentação , Broncoscopia/métodos , Estudos de Coortes , Resistência a Medicamentos/genética , Resistência a Medicamentos/imunologia , Eosinófilos/citologia , Eosinófilos/imunologia , Feminino , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Fenótipo , Índice de Gravidade de Doença , Escarro/citologia , Escarro/imunologia , Células Th2/citologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA