RESUMO
BACKGROUND: Extracorporeal CO2 removal (ECCO2R) could be a valuable additional modality for invasive mechanical ventilation (IMV) in COPD patients suffering from severe acute exacerbation (AE). We aimed to evaluate in such patients the effects of a low-to-middle extracorporeal blood flow device on both gas exchanges and dynamic hyperinflation, as well as on work of breathing (WOB) during the IMV weaning process. STUDY DESIGN AND METHODS: Open prospective interventional study in 12 deeply sedated IMV AE-COPD patients studied before and after ECCO2R initiation. Gas exchange and dynamic hyperinflation were compared after stabilization without and with ECCO2R (Hemolung, Alung, Pittsburgh, USA) combined with a specific adjustment algorithm of the respiratory rate (RR) designed to improve arterial pH. When possible, WOB with and without ECCO2R was measured at the end of the weaning process. Due to study size, results are expressed as median (IQR) and a non-parametric approach was adopted. RESULTS: An improvement in PaCO2, from 68 (63; 76) to 49 (46; 55) mmHg, p = 0.0005, and in pH, from 7.25 (7.23; 7.29) to 7.35 (7.32; 7.40), p = 0.0005, was observed after ECCO2R initiation and adjustment of respiratory rate, while intrinsic PEEP and Functional Residual Capacity remained unchanged, from 9.0 (7.0; 10.0) to 8.0 (5.0; 9.0) cmH2O and from 3604 (2631; 4850) to 3338 (2633; 4848) mL, p = 0.1191 and p = 0.3013, respectively. WOB measurements were possible in 5 patients, indicating near-significant higher values after stopping ECCO2R: 11.7 (7.5; 15.0) versus 22.6 (13.9; 34.7) Joules/min., p = 0.0625 and 1.1 (0.8; 1.4) versus 1.5 (0.9; 2.8) Joules/L, p = 0.0625. Three patients died in-ICU. Other patients were successfully hospital-discharged. CONCLUSIONS: Using a formalized protocol of RR adjustment, ECCO2R permitted to effectively improve pH and diminish PaCO2 at the early phase of IMV in 12 AE-COPD patients, but not to diminish dynamic hyperinflation in the whole group. A trend toward a decrease in WOB was also observed during the weaning process. Trial registration ClinicalTrials.gov: Identifier: NCT02586948.
RESUMO
RATIONALE: COVID-19 ARDS could differ from typical forms of the syndrome. OBJECTIVE: Pulmonary microvascular injury and thrombosis are increasingly reported as constitutive features of COVID-19 respiratory failure. Our aim was to study pulmonary mechanics and gas exchanges in COVID-2019 ARDS patients studied early after initiating protective invasive mechanical ventilation, seeking after corresponding pathophysiological and biological characteristics. METHODS: Between March 22 and March 30, 2020 respiratory mechanics, gas exchanges, circulating endothelial cells (CEC) as markers of endothelial damage, and D-dimers were studied in 22 moderate-to-severe COVID-19 ARDS patients, 1 [1-4] day after intubation (median [IQR]). MEASUREMENTS AND MAIN RESULTS: Thirteen moderate and 9 severe COVID-19 ARDS patients were studied after initiation of high PEEP protective mechanical ventilation. We observed moderately decreased respiratory system compliance: 39.5 [33.1-44.7] mL/cmH2O and end-expiratory lung volume: 2100 [1721-2434] mL. Gas exchanges were characterized by hypercapnia 55 [44-62] mmHg, high physiological dead-space (VD/VT): 75 [69-85.5] % and ventilatory ratio (VR): 2.9 [2.2-3.4]. VD/VT and VR were significantly correlated: r2 = 0.24, p = 0.014. No pulmonary embolism was suspected at the time of measurements. CECs and D-dimers were elevated as compared to normal values: 24 [12-46] cells per mL and 1483 [999-2217] ng/mL, respectively. CONCLUSIONS: We observed early in the course of COVID-19 ARDS high VD/VT in association with biological markers of endothelial damage and thrombosis. High VD/VT can be explained by high PEEP settings and added instrumental dead space, with a possible associated role of COVID-19-triggered pulmonary microvascular endothelial damage and microthrombotic process.
RESUMO
BACKGROUND: Extracorporeal carbon dioxide removal (ECCO2R) is a promising technique for the management of acute respiratory failure, but with a limited level of evidence to support its use outside clinical trials and/or data collection initiatives. We report a collaborative initiative in a large metropolis. METHODS: To assess on a structural basis the rate of utilization as well as efficacy and safety parameters of 2 ECCO2R devices in 10 intensive care units (ICU) during a 2-year period. RESULTS: Seventy patients were recruited in 10 voluntary and specifically trained centers. The median utilization rate was 0.19 patient/month/center (min 0.04; max 1.20). ECCO2R was started under invasive mechanical ventilation (IMV) in 59 patients and non-invasive ventilation in 11 patients. The Hemolung Respiratory Assist System (Alung) was used in 53 patients and the iLA Activve iLA kit (Xenios Novalung) in 17 patients. Main indications were ultraprotective ventilation for ARDS patients (n = 24), shortening the duration of IMV in COPD patients (n = 21), preventing intubation in COPD patients (n = 9), and controlling hypercapnia and dynamic hyperinflation in mechanically ventilated patients with severe acute asthma (n = 6). A reduction in median V T was observed in ARDS patients from 5.9 to 4.1 ml/kg (p <0.001). A reduction in PaCO2 values was observed in AE-COPD patients from 67.5 to 51 mmHg (p< 0.001). Median duration of ECCO2R was 5 days (IQR 3-8). Reasons for ECCO2R discontinuation were improvement (n = 33), ECCO2R-related complications (n = 18), limitation of life-sustaining therapies or measures decision (n = 10), and death (n = 9). Main adverse events were hemolysis (n = 21), bleeding (n = 17), and lung membrane clotting (n = 11), with different profiles between the devices. Thirty-five deaths occurred during the ICU stay, 3 of which being ECCO2R-related. CONCLUSIONS: Based on a registry, we report a low rate of ECCO2R device utilization, mainly in severe COPD and ARDS patients. Physiological efficacy was confirmed in these two populations. We confirmed safety concerns such as hemolysis, bleeding, and thrombosis, with different profiles between the devices. Such results could help to design future studies aiming to enhance safety, to demonstrate a still-lacking strong clinical benefit of ECCO2R, and to guide the choice between different devices. TRIAL REGISTRATION: ClinicalTrials.gov: Identifier: NCT02965079 retrospectively registered https://clinicaltrials.gov/ct2/show/NCT02965079.
RESUMO
INTRODUCTION: The aim of extracorporeal removal of CO2 (ECCO2R) is to ensure the removal of CO2 without any significant effect on oxygenation. ECCO2R makes use of low to moderate extracorporeal blood flow rates, whereas extracorporeal membrane oxygenation (ECMO) requires high blood flows. STATE OF THE ART: For each ECCO2R device it is important to consider not only performance in terms of CO2 removal, but also cost and safety, including the incidence of hemolysis and of hemorrhagic and thrombotic complications. In addition, it is possible that the benefits of such techniques may extend beyond simple removal of CO2. There have been preliminary reports of benefits in terms of reduced respiratory muscle workload. Mobilization of endothelial progenitor cells could also occur, in analogy to the data reported with ECMO, with a potential benefit in term of pulmonary repair. The most convincing clinical experience has been reported in the context of the acute respiratory distress syndrome (ARDS) and severe acute exacerbations of chronic obstructive pulmonary disease (COPD), especially in patients at high risk of failure of non-invasive ventilation. PERSPECTIVES: Preliminary results prompt the initiation of randomized controlled trials in these two main indications. Finally, the development of these technologies opens new perspectives in terms of long-term ventilatory support.