Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 49(47): 10216-27, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20964370

RESUMO

Phytate is an antinutritional factor that influences the bioavailability of essential minerals by forming complexes with them and converting them into insoluble salts. To further our understanding of the chemistry of phytate's binding interactions with biologically important metal cations, we determined the stoichiometry, affinity, and thermodynamics of these interactions by isothermal titration calorimetry. The results suggest that phytate has multiple Ca(2+)-binding sites and forms insoluble tricalcium- or tetracalcium-phytate salts over a wide pH range (pH 3.0-9.0). We overexpressed the ß-propeller phytase from Hahella chejuensis (HcBPP) that hydrolyzes insoluble Ca(2+)-phytate salts. Structure-based sequence alignments indicated that the active site of HcBPP may contain multiple calcium-binding sites that provide a favorable electrostatic environment for the binding of Ca(2+)-phytate salts. Biochemical and kinetic studies further confirmed that HcBPP preferentially recognizes its substrate and selectively hydrolyzes insoluble Ca(2+)-phytate salts at three phosphate group sites, yielding the final product, myo-inositol 2,4,6-trisphosphate. More importantly, ITC analysis of this final product with several cations revealed that HcBPP efficiently eliminates the ability of phytate to chelate several divalent cations strongly and thereby provides free minerals and phosphate ions as nutrients for the growth of bacteria. Collectively, our results provide significant new insights into the potential application of HcBPP in enhancing the bioavailability and absorption of divalent cations.


Assuntos
6-Fitase/metabolismo , Cátions Bivalentes/metabolismo , Quelantes/metabolismo , Ácido Fítico/metabolismo , 6-Fitase/genética , Sítios de Ligação , Disponibilidade Biológica , Cálcio/metabolismo , Calorimetria/métodos , Domínio Catalítico , Gammaproteobacteria/enzimologia , Concentração de Íons de Hidrogênio , Fosfatos de Inositol/química , Ácido Fítico/antagonistas & inibidores , Ácido Fítico/química , Termodinâmica
2.
FEBS J ; 273(14): 3335-45, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16857016

RESUMO

DNA shuffling was used to improve the thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2. Two highly thermostable mutants, III-1 and III-2, were generated after three rounds of shuffling and recombination of mutations. Their optimal reaction temperatures were all 80 degrees C, which was 10 degrees C higher than that of the wild-type. The mutant enzyme III-1 carried seven mutations: N147D, F195L, N263S, D311G, A344V, F397S, and N508D. The half-life of III-1 was about 20 times greater than that of the wild-type at 78 degrees C. The mutant enzyme III-2 carried M375T in addition to the mutations in III-1, which was responsible for the decrease in specific activity. The half-life of III-2 was 568 min while that of the wild-type was < 1 min at 80 degrees C. The melting temperatures of III-1 and III-2, as determined by differential scanning calorimetry, increased by 6.1 degrees C and 11.4 degrees C, respectively. Hydrogen bonding, hydrophobic interaction, electrostatic interaction, proper packing, and deamidation were predicted as the mechanisms for the enhancement of thermostability in the enzymes with the mutations.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Embaralhamento de DNA , DNA Bacteriano/genética , Genes Bacterianos , Glicosídeo Hidrolases/metabolismo , Bacillus/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Cálcio/química , Varredura Diferencial de Calorimetria , Estabilidade Enzimática , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Meia-Vida , Temperatura Alta , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Ligação Proteica , Recombinação Genética , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA